Ace of Pace

Sample Paper (Engineering)

Grade X moving to XI

Section (A): Only One Option Correct

Q.1 If $6x^4 - 2x^2 + 7x + 10$ is divided by $1 - 2x$, then remainder wi	0.1	If $6x^4 - 2x^2 + 7x + 10$	is divided by $1-2x$.	then remainder will be
---	-----	----------------------------	------------------------	------------------------

(a)
$$\frac{107}{8}$$

(b)
$$-\frac{107}{8}$$

(c)
$$\frac{57}{8}$$

(c)
$$\frac{57}{8}$$
 (d) $-\frac{57}{8}$

Q.2 If one of the zeroes of the quadratic polynomial
$$Kx^2 + (K-2)x + 4$$
 is 1, then the value of K is:

(a)
$$\frac{1}{2}$$

(d)
$$-\frac{1}{2}$$

(a)
$$x^2 + \sqrt{x} + 7$$
 (b) $x^3 + \frac{1}{x} + 2$

(b)
$$x^3 + \frac{1}{x} + 2$$

(c)
$$x^{3/2} - 2x$$
 (d) $4x^2 + 1$

(d)
$$4x^2 + 1$$

Q.4 If
$$x^2 + bx + c = (x - \alpha)(x - \beta)$$
, then $\alpha + \beta + \alpha\beta$ is:

(a)
$$c+b$$

(b)
$$c-b$$

Q.5
$$(3a-2b)(9a^2+6ab+4b^2)=$$

(a)
$$27a^3 - 8b^3$$

(b)
$$27a^3 + 8b^3$$

(c)
$$9a^3 - 4b^3$$

(d)
$$9a^3 + 4b^3$$

Q.6 Find
$$x^2 + \frac{1}{x^2}$$
 if $x - \frac{1}{x} = 1$.

Q.7 What is the common value of x and y for
$$x+4y=14$$
 and $7x-3y=5$?

(a)
$$x = 1, y = 2$$

(b)
$$x = 2, y = 3$$

(c)
$$x = 3, y = 4$$

Q.8 The condition for which the system of linear equation
$$a_1x + b_1y + c_1 = 0$$
 and $a_2x + b_2y + c_2 = 0$ has no solution is:

(a)
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

(a)
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$
 (b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ (c) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

(c)
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

Q.9 If
$$\frac{12}{x} + \frac{3}{y} = 3$$
 and $x = 6$, then value of y is:

Q.10	For quadratic equation (a) -2	$x^2 - 2x - 35 = 0$, then su (b) 35	um of square of roots is (c) -74	(d) 74	
Q.11	Find the value of discri	minant of the quadratic (b) 1	equation $2x^2 - 3x + 1 = 0$ (c) 2	(d) 3	
Q.12	Roots of $2^x + 2^{1-x} = 3$ at (a) 1, 2	are: (b) -1, 0	(c) 0, 1	(d) 0, 2	
Q.13	If α and β are root of	the equation $x^2 - 5x + 3$	=0, find the equation w	hose roots are $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$.	
	(a) $3x^2 + 19x + 3 = 0$	(b) $3x^2 - 19x + 3 = 0$	(c) $x^2 + 19x + 3 = 0$	(D) $x^2 - 19x + 19 = 0$	
Q.14			st Rs. 15. Three oranges, apples. How much did (c) Rs. 15	two bananas and one apple I pay? (d) cannot be determined	
Q.15	Which of the following (a) $p(x) = x^2 + \pi x + 7$	g is not a polynomial in x	(b) p(x) = 5		
	$(x) p(x) = x + \frac{1}{x}$		(d) $p(x) = 4x + 3$		
Q.16	For what real values of k does the parabola $y = x^2 - 2x + 1$ intersect the line $y = x + k$ at two distinct points.				
	(a) -2	(b) −1	(c) -3	(d) $-3/2$	
Q.17	Find the number of inte	(x-3)			
	(a) 1	(b) 2	(c) 3	(d) 4	
Q.18	If $ 3x-5 = \frac{17}{2}$ then sur	m of all values of x is:			
	. 10	10	. 10		

(b) $\frac{10}{3}$

(c) $\frac{10}{6}$

(d) None of these

Q.19 Graph of ax + by + c = 0 is of the form:

(a) Straight line

(b) Circle

(c) Parabola

(d) Ellipse

If one zero of $3x^2 - 5x + 6k$ is reciprocal to the other, then the value of k is : Q.20

(a) 0

(b) $\frac{1}{2}$

(c) $\frac{2}{3}$

(d) $-\frac{1}{2}$

$Section \ (B): Challenge \ Yourself$

Q.21	If the roots of the equation $x^2 - (p-1)x + (p^2-4) = 0$ are symmetric about the origin, find the value						
	of <i>p</i> . (a) 0	(b) 2	(c) 1	(d) -1			
Q.22	Find the value of $\sqrt{30 + \sqrt{30 + \sqrt{30 + \dots \infty}}}$.						
	(a) 6	(b) -5	(c) -6	(d) 5			
Q.23	-	-		ut 10 of these failed to go and students attended the picnic? (d) 20			
Q.24	$f(x+1) = 0$ are γ and	ic polynomial such that δ , and we are given that (b) $x^2 + 6x + 5$	t $\gamma \delta = 2$ and $\gamma + \delta = 3$, f	-			
			(c) x +x +3	(d) x 10x13			
Q.25	Sum of all distinct roots						
	(a) 1	(b) 3	(c) 0	(d) -3			
Section (C): Logical Reasoning							
Q.26	Let XYZ be a three-digit number, where $(X + Y + Z)$ is not a multiple of 3. Then $(XYZ + YZX + ZXY)$ is not divisible by						
	$\begin{array}{ccc} \text{Then } (XIZ + IZX + ZX) \\ \text{(a)} 3 \end{array}$	(b) 9	(c) 37	(d) $X+Y+Z$			
Q.27	A man walks down the backside of his house straight 25 metres, then turns to the right and walks 50 metres again, then he turns towards left and again walk 25 metres. If his house face to the East. What is the his direction from the starting point? (a) South-East (b) South-West (c) North-East (d) North-West						
0.20		(b) Bouil West	(c) Troitin Bust	(d) Horar West			
Q.28	2, 6, 12, 20, 30, <i>X</i> , 56 Then <i>X</i> = ? (a) 42	(b) 40	(c) 47	(d) 54			
Q.29	In the sum $\otimes +1 \otimes +5 \otimes +\otimes +\otimes 1 = 1 \otimes \otimes$ for which digit does the symbol \otimes stand?						
	(a) 2	(b) 3	(c) 4	(d) 5			
Q.30	The letters from A to Z are numbered from 1 to 26 respectively. If $GHI = 1578$ and $DEF = 912$, then what is ABC equal to?						
	(a) 492	(b) 468	(c) 262	(d) 246			