

MUMBAI / DELHI-NCR / PUNE / HYDERABAD / AKOLA / GOA / JALGOAN / BOKARO / AMRAVATI / PATNA / BARAMATI

ACE OF PACE

Grade X moving to XI **SOLUTIONS**

ENGINEERING

Section - A

1. (A)

Taking
$$a = 10^x$$
, $a + \frac{4}{a} = \frac{81}{2}$

This would give the quadratic equation:

$$2a^2 - 81a + 8 = 0$$

We want to find the sum of possible values of x,

Let the value of x be x_1 and x_2 these would correspond to $\log a_1$, and $\log a_2$

The sum of log $a_1 + \log a_2$ would log $(a_1 \times a_2)$

From the quadratic equation we got above, we can see that the product of the possible value

$$a_1 a_2 = \frac{8}{2} = 4$$

Therefore, the sum of values of x would be log (4) which be $2 log_{10} 2$

Therefore, option A is the correct answer.

2. (C)

Let the initial number of chocolates be 64x.

First child gets 32x + 1 and 32x - 1 are left.

 2^{nd} child gets 16x + 1/2 and 16x - 3/2 are left

 3^{rd} child gets 8x + 1/4 and 8x - 7/4 are left

 4^{th} child gets 4x + 1/8 and 4x - 15/8 are left

 5^{th} child gets 2x + 1/16 and 2x - 31/16 are left

Given, $2x-31/16=0 \Rightarrow 2x=31/16 \Rightarrow x=31/32$

:. Initially the Gentleman has 64x i.e.

64*31/32 = 62 Chocolates

3. (D)

Given a and b are the distinct roots of the equation $2x^2 - 6x + k = 0$

$$\Rightarrow$$
 a+b=(-6/2)=3 (Sum of the roots)

$$\Rightarrow$$
 ab = k/2 (Product of the roots)

Now, (a+b) and ab are the roots of the quadratic equation $x^2 + px + p = 0$

$$\Rightarrow$$
 a+b+ab=-p \Rightarrow 3+k/2=-p

$$\Rightarrow$$
 $(a+b)(ab)=p \Rightarrow 3(k/2)=p$

$$3 + \frac{k}{2} = -\frac{3k}{2} \Rightarrow 2k = -3 \Rightarrow k = -\frac{3}{2}$$

$$p = \frac{3k}{2} = \frac{3}{2} \left(-\frac{3}{2} \right) = -\frac{9}{4}$$

DATE: 24/08/2025

$$\Rightarrow 8(k-p) = 8(-\frac{3}{2} + \frac{9}{4}) = -12 + 18 = 6$$

$$f(x) = \frac{x^2 + 2x - 15}{x^2 - 7x - 18} < 0$$
$$\frac{(x+5)(x-3)}{(x-9)(x+2)} < 0$$

We have four inflection points -5, -2, 3 and 9.

For, x < -5 all four terms (x+5), (x-3), (x-9), (x+2) will be negative. Hence, the overall expression will be positive. Similarly, when x > 9, all four terms will be positive. When x belongs to (-2,3), two terms are negative and two are positive. Hence, the overall expression is positive again, we are left with the range (-5,-2) and (3, 9) where the expression will be negative.

5. (A)

There are two critical points for the inequality to consider: x = -5 and x = 3/2

Region I: x is greater than 3/2 in this scenario, both the terms would be positive; cross-multiplying, we get the relation 2x-3 < x+5 giving the boundary $x \le 8$, hence giving us the valid range as

$$\frac{3}{2} < x \le 8$$

Region II:
$$-5 < x < \frac{3}{2}$$

In this case, the right-hand side will be a negative value, and hence, the sign would change when multiplying, giving the inequality $2x - 3 \ge x + 5$

Which will give x > 8, which is out of bounds for this region another way is to put a value in the inequality; by putting x = 0, we could see that the inequality does not hold in this region Region III: x less than -5

In this scenario both the terms are negative, essentially giving us the same boundary as region 1; we take the lower bounds, giving us that x has to be less than 5

Therefore, for the given inequality to hold true x < -5 or $\frac{3}{2}x \le 8$

Hence, option A is the correct answer.

6.

Option
$$4:\frac{1}{p}-3$$

For the given A.P

$$a = 1/p, d = ((1-p)/p)-(1/p) = -1$$

$$4^{th}$$
 term for the A.P = $a + (4-1)d = a + 3d = 1/p - 3$

Hence, the correct options is 4

7. (A)

Option 1:36

The numbers from 9 to 59 divisible by 3 are: 9, 12, 15, and 57.

This is an Arithmetic Progression with:

First term (a) = 9

- Common difference (d) = 3
- Last term $(a_n) = 57$

First, find the total number of terms (n) in this AP:

$$\Rightarrow$$
 57 = 9+(n-1)×3

$$\Rightarrow$$
 57-9=(n-1)×3

$$\Rightarrow 48 = (n-1) \times 3$$

$$\Rightarrow 48/3 = n-1$$

$$\Rightarrow 16 = n - 1$$

$$\Rightarrow$$
 n=16+1

$$\Rightarrow$$
 n=17

The numbers are arranged in descending order. We need then 10th number from the bottom.

The 10th number from the bottom is the same as the 10th number if the list were arranged in ascending order (which is our original AP) find the 10^{th} term (a_{10}) of the ascending AP:

$$\Rightarrow a_{10} = a + (10-1) \times d$$

$$\Rightarrow a_{10} = 9 + (9) \times 3$$

$$\Rightarrow a_{10} = 9 + 27$$

$$\Rightarrow a_{10} = 36$$

- :. The number at the tenth place from the bottom is 36.
- 8. (D)

In the given AP,

First term $a_1 = 6$

Last term $a_n = 216$

Common difference = 7

Now, to find the number of term, $n = ((a_n - a_1)/d) + 1$

$$n = (216-6)7+1$$

$$n = 210/7 + 1$$

$$n = 30 + 1$$

$$n = 31$$

So, middle term is (n+1)/2

$$=(31+1)/2$$

$$=16$$

Now to calculate the middle term

$$a_{16} = a_1 + 15 \times d$$

$$a_{16} = 6 + 15 \times 7$$

$$a_{16} = 6 + 105 = 111$$

So the middle term of the given AP is 111

(B) 9.

Let
$$f(x) = x^4 - ax^3 + bx^2 - cx + 8$$

$$f(1) = 4$$

$$1 - a + b - c + 8 = 4$$

$$-a+b-c=-5$$

$$f(-1) = 3$$

$$1+a+b+c+8=3$$

 $a+b+c=-6$...Eqn. (2)

$$2b = -11$$
 or $b = -5.5$

Hence the answer is -5.5

10. (C)

$$a = 3 + 2\sqrt{2}$$

$$\frac{1}{a} = \frac{1}{3 + 2\sqrt{2}}$$

$$\Rightarrow \frac{1}{a} = \frac{3 - 2\sqrt{2}}{\left(3 + 2\sqrt{2}\right) \times \left(3 - 2\sqrt{2}\right)}$$

$$\Rightarrow \frac{1}{a} = \frac{3 - 2\sqrt{2}}{3^2 - \left(2\sqrt{2}\right)^2}$$

$$\Rightarrow \frac{1}{a} = \frac{3 - 2\sqrt{2}}{9 - 8}$$

$$\Rightarrow \frac{1}{a} = 3 - 2\sqrt{2}$$

$$a + \frac{1}{a} = 3 + 2\sqrt{2} + 3 - 2\sqrt{2}$$

$$\Rightarrow a + \frac{1}{a} = 6$$

$$\frac{a^6 - a^4 - a^2 + 1}{a^3}$$

$$\Rightarrow \left(a^3 + \frac{1}{a^3}\right) - \left(a + \frac{1}{a}\right)$$

$$\Rightarrow \left\{ \left(a + \frac{1}{a}\right)^3 - 3\left(a + \frac{1}{a}\right) \right\} - a + \frac{1}{a}$$

$$\Rightarrow (6^3 - 3 \times 6) - 6$$

$$\Rightarrow 216-18-6$$

$$\therefore$$
 The required value of $\frac{a^6 - a^4 - a^2 + 1}{a^3}$ is 192.

11. (A)

$$(Ax)^{3} + (By)^{3} + CxyD = (5x^{2} + 2y^{2})(\sqrt{5}x + \sqrt{2}y)$$

$$\Rightarrow (Ax)^{3} + (By)^{3} + CxyD = 5\sqrt{5}x^{3} + 2\sqrt{2}y^{3} + 5\sqrt{2}x^{2}y + 2\sqrt{5}xy^{2}$$

$$\Rightarrow (Ax)^{3} + (By)^{3} + CxyD = (\sqrt{5}x)^{3} + (\sqrt{2}y)^{3} + \sqrt{10}xy(\sqrt{5}x + \sqrt{2}y)$$

On comparing,
$$A = \sqrt{5}$$
, $B = \sqrt{2}$, $C = \sqrt{10}$

$$\Rightarrow AB = C$$

 \therefore The relation between A, B, and C is AB = C

12. **(B)**

The equations can be represented as:

$$8x + 240y = 400$$
 ...(i)

$$6x + 200y = 320$$
 ...(ii)

Solving these equations:

Subtract equation 2 from equation 1,

$$\Rightarrow$$
 $(8x-6x)+(240y-200y)=(400-320)$

$$\Rightarrow 2x + 40y = 80$$

$$\Rightarrow x + 20y = 40$$

$$\Rightarrow x = 40 - 20y$$

Substituting x = 40 - 20y in Equation 2,

$$\Rightarrow$$
 6(40-20y)+200y=320

$$\Rightarrow 240 - 120y + 200y = 320$$

$$\Rightarrow 240 + 80y = 320$$

$$\Rightarrow 80y = 80$$

$$\Rightarrow y = 1$$

Substituting y = 1 in equation 1,

$$\Rightarrow 8x + 240 = 400$$

$$\Rightarrow 8x = 160$$

$$\Rightarrow x = 20$$

 \therefore The monthly electricity bill for a house with m rooms and consuming n units is 20m + n.

$$x - y = \frac{x + y}{7} = \frac{xy}{6},$$

$$\Rightarrow x - y = \frac{x + y}{7} = \frac{xy}{6} = K$$

$$\Rightarrow$$
 x - y = K; x + y = 7K; xy = 6K

$$\Rightarrow (x+y)^2 - (x-y)^2 = (7K)^2 - K^2$$

$$\Rightarrow x^2 + y^2 + 2xy - x^2 - y^2 + 2xy = 49K^2 - K^2$$

$$\Rightarrow 4xy = 48K^2$$

Putting value of xy

$$\Rightarrow 4 \times 6K = 48K^2$$

$$\Rightarrow 24K = 48K^2$$

$$\Rightarrow K = 0.5$$

Now,

$$xy = 6 \times 0.5$$

$$xy = 3$$

Thus, the value of xy is 3

14. (D)

Let my current age = x years and my cousin's age = y years.

Three-fifths of my current age is the same as five-sixths of that of one of my cousins',

$$\Rightarrow \frac{3x}{5} = \frac{5y}{6}$$

$$\Rightarrow 18x = 25y$$

My age ten years ago will be his age four years hence,

$$\Rightarrow x-10=y+4$$

$$\Rightarrow$$
 y = x - 14,

$$\Rightarrow$$
 18x = 25(x-14)

$$\Rightarrow 18x = 25x - 350$$

$$\Rightarrow 7x = 350$$

$$\therefore$$
 x = 50 years

We know that
$$a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$$

In
$$x^3 + 8y^3 + z^3 - 6xyz$$
, $a = x$, $b = 2y$ and $c = z$

By using the above equation, we get

$$x^{3} + 8y^{3} + z^{3} - 6xyz = (x + 2y + z)(x^{2} + (2y)^{2} + z^{2} - x(2y) - (2y)(z) - zx)$$

$$= (x+2y+z)(x^2+4y^2+z^2-2xy-2yz-zx).$$

Let $y = x^2$. The given polynomial can be written as a quadratic equation in y:

$$y^2 - 10y + 22 = 0$$

Using the quadratic formula to find the roots for y, where a = 1, b = -10, c = 22

$$y = \frac{-(-10) \pm \sqrt{(-10)^2 - 4 \times 1 \times 22}}{2 \times 1}$$

$$\Rightarrow y = \frac{10 \pm \sqrt{100 - 88}}{2}$$

$$\Rightarrow y = \frac{10 \pm \sqrt{12}}{2}$$

$$\Rightarrow y = \frac{10 \pm 2\sqrt{3}}{2}$$

$$\Rightarrow$$
 y = 5 ± $\sqrt{3}$

So, the two roots for y are:

$$y_1 = 5 + \sqrt{3}$$

$$y_2 = 5 - \sqrt{3}$$

Therefore, the quadratic in y can be factored as:

$$(y-y_1)(y-y_2) = (y-(5+\sqrt{3}))(y-(5-\sqrt{3}))$$

Substitute back $y = x^2$:

$$(x^2 - (5 + \sqrt{3}))(x^2 - (5 - \sqrt{3}))$$

 \therefore The factorization of the polynomial $x^4 - 10x^2 + 22$ into a product of two quadratic polynomials is $(x^2-(5+\sqrt{3}))(x^2-(5-\sqrt{3})).$

Let
$$2^x = 3^y = 6^{-z} = k$$

From this:

$$2^x = k$$

$$\Rightarrow$$
 2 = $k^{1/x}$ (Equation 1)

$$3^y = k$$

$$\Rightarrow$$
 3 = $k^{1/y}$ (Equation 2)

$$6^{-z} = k$$

$$\Rightarrow$$
 6 = $k^{-1/z}$ (Equation 3)

We know that $6 = 2 \times 3$

Substitute values from Equation 1, Equation 2, and Equation 3:

$$\implies k^{-1/z} = k^{1/x} \times k^{1/y}$$

$$\Rightarrow k^{-1/z} = k^{(1/x) + (1/y)}$$

Equating the exponents (since bases are same):

$$\Rightarrow -\frac{1}{z} = \frac{1}{x} + \frac{1}{y}$$

$$\Rightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$$

$$\therefore \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \text{ is equal to } 0.$$

$$(5x-3y)^2 = (5x+3y)^2 - 4 \times 5x.3y$$

$$\Rightarrow (5x-3y)^2 = (5x+3y)^2 - 60xy$$

$$\Rightarrow (5x-3y)^2 = 15^2 - 60 \times 3 = 225 - 180 = 45$$

$$(5x-3y) = \sqrt{45}$$

$$\Rightarrow 5x - 3y = 3\sqrt{5}$$

:. The correct option is (B).

Let boat speed = 8x, stream speed = 5x

$$\Rightarrow$$
 Upstream speed = $8x - 5x = 3x$

$$\Rightarrow$$
 33.2 ÷ 3x = 1.383

$$\Rightarrow$$
 3x = 33.2 ÷ 1.383 = 24

$$\Rightarrow x = 8$$

$$\Rightarrow$$
 Boat speed = $8x = 64 \text{ km/h}$

 \Rightarrow Stream speed = 5x = 40 km/h

 \Rightarrow Upstream speed = 64 - 40 = 24 km/h

 \Rightarrow Downstream speed = 64 + 40 = 104 km/h

Time for 47.1 km upstream = $47.1 \div 24 = 1.9625$ hours

Time for 55.9 km downstream = $55.9 \div 104 = 0.5375$ hours

Total time = 1.9625 + 0.5375 = 2.5 hours

:. The correct answer is 2.5 hours.

Let
$$\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\dots}}}}$$

 $x = \sqrt{6+x} \implies x^2 = 6+x \implies x^2 - x - 6 = 0 \implies (x-3)(x+2) = 0$
 $\implies x = 3 \text{ or } x = -2$

But, the given expression is positive.

Hence, the value of the given expression is 3.

Section - B

$$2x^2 + kx + 5 = 0$$
 has no real roots so $D < O$

$$k^2 - 40 < 0$$

$$\left(k - \sqrt{40}\right)\!\left(k + \sqrt{40}\right) < 0$$

$$k \in \left(-\sqrt{40}, \sqrt{40}\right)$$

$$x^2 + (k-5)x + 1 = 0$$
 has two district real roots so $D > 0$

$$(k-5)^2-4>0$$

$$k^2 - 10k + 21 > 0$$

$$(k-3)(k-7) > 0$$

$$k \in (-\infty,3) \cup (7,\infty)$$

Therefore possible value of K are -6, -5, -4, -3, -2, -1, 0, 1, 2 In 9 total 9 integer value of K are possible.

22. (D)

Let $a_1, d_1; a_2, d_2$ be first term and common difference of two A.P.'s respectively.

Given:
$$\frac{S_n \text{ of Ist AP}}{S_n \text{ of IInd AP}} = \frac{7n+1}{4n+27}$$

$$\Rightarrow \frac{\frac{n}{2} \left[2a_1 + (n-1)d_1 \right]}{\frac{n}{2} \left[2a_2 + (n-1)d_2 \right]} = \frac{7n+1}{4n+27}$$

$$\Rightarrow \frac{a_1 + \frac{(n-1)}{2}d_1}{a_2 + \frac{(n-1)}{2}d_2} = \frac{7n+1}{4n+27} \qquad \dots (1)$$

For mth term, we have

$$\frac{t_{m} \text{ of Ist AP}}{t_{m} \text{ of IInd AP}} = \frac{a_{1} + (m-1)d_{1}}{a_{2} + (m-1)d_{2}} \qquad(2)$$

Compare LHS of (10 with RHS of (2)

Put
$$\frac{n-1}{2} = m-1$$

$$\Rightarrow$$
 $n-1=2m-2$

$$\Rightarrow$$
 $n=2m-1$

Replace n by 2m - 1 in (1) we get

$$\frac{a_1 + (m-1)d_1}{a_2 + (m-1)d_2} = \frac{7(2m-1)+1}{4(2m-1)+27} = \frac{14m-6}{8m+23}$$

 \therefore Required rate is (14n-6): (8m+23)

23.

The price of petrol (in Rupees per litre) on m^{th} day of the year is 80 + 0.1m where $m = 1, 2, 3 \dots 100$ and thereafter remains constant.

On 100^{th} day price = $80 + 0.1 \times 100 = Rs.90$ thereafter remains constant

On the other hand, the price of diesel (in Rupees per litre) on n^{th} day of 2021 is 69 + 0.15n for any n.

For equal prices there are two cases

Case (i): before 100th day

80 + 0.1m = 69 + 0.15m (where m = n prices become equal)

m = 220 days

Thus it is not possible as m < 100 days

Case (ii): $m \ge 100$

As the price will remain constant

$$69 + 0.15m = 90$$

$$m = 140 \text{ days}$$

Thus, the date will be 20th May

Hence, option (B) is correct

$$a_n - 6a_{n-1} - 2a_{n-2} = 0$$

$$a_{10} - 6a_9 - 2a_8 = 0$$

$$a_{10} - 2a_8 = 6a_9$$

$$\frac{a_{10} - 2a_8}{a_9} = 6$$

25.

Let roots of the quadratic equation are α , β .

Given,
$$\lambda = \frac{\alpha}{\beta}$$
 and $\lambda + \frac{1}{\lambda} = 1 \Rightarrow \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = 1$

$$\frac{\left(\alpha+\beta\right)^2-2\alpha\beta}{\alpha\beta}=1 \qquad \dots (1)$$

The quadratic equation is, $3m^2x^2 + m(m-4)x + 2 = 0$

$$\therefore \quad \alpha + \beta = \frac{m(4-m)}{3m^2} = \frac{4-m}{3m} \text{ and } \alpha\beta = \frac{2}{3m^2}$$

Put these values in eq. (1),

$$\frac{\left(\frac{4-m}{3m}\right)^2}{\frac{2}{3m^2}} = 3$$

$$\Rightarrow$$
 $(m-4)^2 = 18$

$$\Rightarrow$$
 m = $4 \pm \sqrt{18}$

Therefore, least value is $4 - \sqrt{18} = 4 - 3\sqrt{2}$

Section - C

$$x = 2^{12(7+4\sqrt{3})}$$

$$x^{\frac{7}{2}} = 2^{42(7+4\sqrt{3})}$$

$$x^{2\sqrt{3}} = 2^{24\sqrt{3}(7+4\sqrt{3})}$$

$$\frac{x^{\frac{7}{2}}}{x^{2\sqrt{3}}} = 2^{\left(7+4\sqrt{3}\right)\left(42-24\sqrt{3}\right)} = 2^{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)6} = 2^{6} = 64$$

Hence C is correct answer.

27. (C)

The logic followed here is:

- In a row of 21 men
- Manish was shifted by four places towards the right, now he becomes 12th from the left end On combining the statements, we get

Earlier position from the left end = 12th from the left end – between shifted four places towards the right

$$=12-4$$

$$=8th$$

Position from right end: $21 - 8 + 1 = 14^{th}$

28. (D)

Hence there are "24" triangles in the figure

29. (A)

3 at the top

30. (B)

Pair of opposite letters