EXERCISE SOLUTIONS_8TH_PHY_TERM 1

1. MEASUREMENTS, UNITS, DIMENSIONS, VECTORS

LEVEL 1

- 1. (d) Mass, length, temperature are base quantities
- 2. (d) All are units of length
- 3. (a) 1 m = 100 cm
- 4. (d) Mass is a base quantity whereas others are derived quantities
- 5. (c) Density = $\frac{mass}{volume}$, SI unit: $\frac{kg}{m^3}$

6. (c) $1g = 10^{-3}kg$, $1cm^3 = 10^{-6}m^3$, $then \frac{1g}{cm^3} = \frac{10^3kg}{m^3}$

- 7. (a) SI unit of velocity: ms^{-1} , Dimensions of velocity = $[M^0L^1T^{-1}]$
- 8. (a) SI unit of acceleration: ms^{-2} , Dimensions of acceleration = $[M^0L^1T^{-2}]$
- 9. (b) Vector quantities are defined using magnitude as well as direction.
- 10. (b) 1km = 1000m, 1hr = 3600s, $\frac{1km}{hr} = \frac{1000}{3600}\frac{m}{s} = \frac{5}{18}\frac{m}{s}$

LEVEL 2

- 1. (c) Dimensional formula of force = $[M^{1}L^{1}T^{-2}]$ Since $[M^{a}L^{b}T^{c}] = [M^{1}L^{1}T^{-2}], a = 1, b = 1, c = -2, thus 2a - b - c = 2 - 1 + 2 = 3$
- 2. (d) $1km = 10^5 cm$, 1hr = 3600s, $54\frac{km}{hr} = 54x\frac{10^5}{3600}\frac{cm}{s} = 1500\frac{cm}{s} = 1.5 x 10^3 \frac{cm}{s}$
- 3. (d) $1m = 10^3 mm_1 1m^2 = 10^6 mm^2$
- 4. (b) Dimensions of $F = [M^{1}L^{1}T^{-2}]$, Dimensions of $V^{2} = [M^{0}L^{2}T^{-2}]$

Since,
$$F = kV^2$$
, thus $k = \frac{F}{V^2} = \frac{[M^1L^1T^{-2}]}{[M^0L^2T^{-2}]} = [M^1L^{-1}T^0]$

7. (b) By pythagoras theorem, $(A + B) = \sqrt{A^2 + B^2} = 5m$

8. (c) By pythagoras theorem, $(A + B) = \sqrt{A^2 + B^2} = 5m$

9. (a) By pythagoras theorem, $(A + B) = \sqrt{A^2 + B^2} = 5m$

10. (c) By pythagoras theorem, $R = \sqrt{4^2 + 3^2} = 5m$

SUBJECTIVE QUESTIONS:

- 3. a) SI unit of pressure is Pa(pascal) or kgm⁻¹s⁻²
 b) SI unit of density is kgm⁻³
 c) SI unit of work is J(joule) or kgm²s⁻²
- 4. From the relation $F = G \frac{m_1m_2}{d^2}$, $G = \frac{Fd^2}{m_1m_2}$ SI unit of G is Nm^2kg^{-2} CGS unit of G is dyne cm^2g^{-2}
- 5. a) Dimensional formula of force is [M¹L¹T⁻²]
 b) Dimensional formula of acceleration is [M⁰L¹T⁻²]
 c) Dimensional formula of density is [M¹L⁻³T⁰]

NHT-CE

a) 4m in the direction of A
b) 7m in the direction of A and B