MUMBAI / DELHI-NCR / PUNE / HYDERABAD / AKOLA / GOA / JALGOAN / BOKARO / AMRAVATI / PATNA / BARAMATI

JEE ADVANCED - 2025

Date: 18-05-2025

Paper -1

MATHEMATICS

SECTION 1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct
 answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If **ONLY** the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Q.1 Let \mathbb{R} denote the set of all real numbers. Let $a_i, b_i \in \mathbb{R}$ for $i \in \{1, 2, 3\}$.

Define the functions $f: \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$, and $h: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = a_1 + 10x + a_2x^2 + a_3x^3 + x^4,$$

$$g(x) = b_1 + 3x + b_2x^2 + b_3x^3 + x^4,$$

$$h(x) = f(x+1) - g(x+2).$$

If $f(x) \neq g(x)$ for every $x \in \mathbb{R}$, then the coefficient of x^3 in h(x) is

(A)	8
(B)	2
(C)	-4
(D)	-6

Ans. (C)

f(x+1) = 91 +10(x+1) +92(x+1)2+93(x+1)3 +CX+174 co-efficient of x3 in f(x+1)= similarly co-efficient of 23 in g(x+2) co-efficient of x3 in h(x) = (a3+4)-(b3+8) fcx) = gcx yx that means fex-gex =0 has no solution f(x)= g(x) = (a,-b,) +7x +(a2-b2) x2+ (a3-b2)x3 it has no read Norot So $(a_3+4)-(b_3+8)=-4$ OPtion (C)

Q.2 Three students S_1 , S_2 , and S_3 are given a problem to solve. Consider the following events:

U: At least one of S_1 , S_2 , and S_3 can solve the problem,

V: S_1 can solve the problem, given that neither S_2 nor S_3 can solve the problem,

W: S_2 can solve the problem and S_3 cannot solve the problem,

T: S_3 can solve the problem.

For any event E, let P(E) denote the probability of E. If

$$P(U) = \frac{1}{2}$$
, $P(V) = \frac{1}{10}$, and $P(W) = \frac{1}{12}$,

then P(T) is equal to

(A)	13	(B)	1	(C)	19	(D)	1
	36		3		60	, ,	$\overline{4}$

Ans. (A)

1.00
Let P(SI) = 2
P(S2) = 4
P (S ₃) = Z
The Project Soft And Project Control of the Control
P(U)= 1-P(U')
$= 1 - [(1-x)(1-x)(1-z)] = \frac{1}{2}$
⇒ (1-2)(1-8)(1-2)= ½
consider p(v): P(SINS) = P(SINS) P(SINS)
2 P(SI) 2 20 = 10
P(W) = P(S2NS3) = 4000
8(1-2)=12
on solving we get you
X = = (24xi) = (24xi)
a = 10 · 8 = 3 · 2 = 13
Option (A)-

Let $\mathbb R$ denote the set of all real numbers. Define the function $f \colon \mathbb R \to \mathbb R$ by

$$f(x) = \begin{cases} 2 - 2x^2 - x^2 \sin \frac{1}{x} & \text{if } x \neq 0, \\ 2 & \text{if } x = 0. \end{cases}$$

Then which one of the following statements is TRUE?

- (A) The function f is **NOT** differentiable at x = 0
- (B) There is a positive real number δ , such that f is a decreasing function on the interval $(0, \delta)$
- (C) For any positive real number δ , the function f is **NOT** an increasing function on the interval $(-\delta, 0)$
- (D) x = 0 is a point of local minima of f

Ans. (C

3	Since fox is continuous so
1	Time (CA) & CANH MUMA SO
+	$\lim_{x\to 0} f(x) = 2 = f(0)$
1	
+	$f'(0) = \lim_{n \to \infty} f(n) - f(0)$
+	$f'(0) = \lim_{h \to 0} f(h) - f(0)$
+	N 76 N
+	3 3 3 12 12 - 5 / 15
-	= lim 2-212- h2 sin (+)-2 =0
	1 his bo
	f(x) is differentiable at x=0
	The first and th
	LHD = lim - h (2+8in(-1)) >D
1	LHD = lim - h (2+8in (1)) >0
	the Term waring
+	0000 1000 - 1 /000 1100
+	RND = $\lim_{h \to ot} = h \left(2 + \lim_{h \to ot} \left(\frac{1}{h}\right)\right) < 0$
	N-30
-	
-	so f(x) attains local maxima
-	at 2=0
	00 1/10 6/120 -6/1-0
	option (B)

Consider the matrix Q.4

$$P = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Let the transpose of a matrix X be denoted by X^T . Then the number of 3×3 invertible matrices Q with integer entries, such that

$$Q^{-1} = Q^T \ \ \text{and} \ \ PQ = QP \,,$$

is

(A)	22	(D)	0	(0)	1.0	(D)	24
(A)	32	(B)	8	(C)	16	(D)	24

Ans. (C) PQ= Given 0 b C 0 20 03 0 20 26 20 d 20 20 26 24 0 Given 00 0 10 a2+ b2 actbd 00 c2+d2 10 ac+bd 0 0 the 29vating terms (a,b) (Cid) (0,1) (1,0) (01-1) -1,0) (0,1) (01-1) (-1,0)

SECTION 2 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen;

Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen, both of

which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a

correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -2 In all other cases.

For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct

answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option (i.e. the question is unanswered) will get 0 marks; and

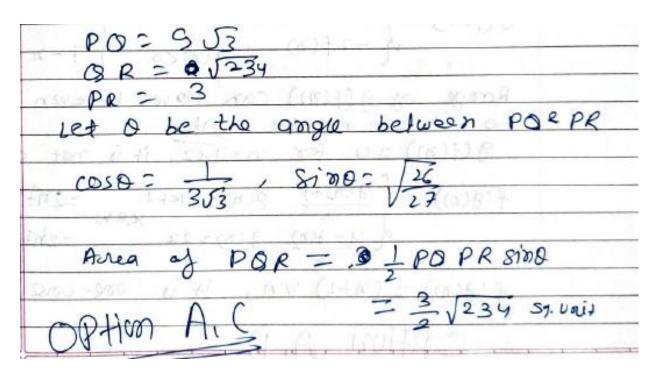
choosing any other combination of options will get -2 marks.

Let L_1 be the line of intersection of the planes given by the equations

$$2x + 3y + z = 4$$
 and $x + 2y + z = 5$.

Let L_2 be the line passing through the point P(2, -1, 3) and parallel to L_1 . Let M denote the plane given by the equation

$$2x + y - 2z = 6.$$


Suppose that the line L_2 meets the plane M at the point Q. Let R be the foot of the perpendicular drawn from P to the plane M.

Then which of the following statements is (are) TRUE?

(A)	The length of the line segment PQ is $9\sqrt{3}$
(B)	The length of the line segment QR is 15
(C)	The area of $\triangle PQR$ is $\frac{3}{2}\sqrt{234}$
(D)	The acute angle between the line segments PQ and PR is $\cos^{-1}\left(\frac{1}{2\sqrt{3}}\right)$

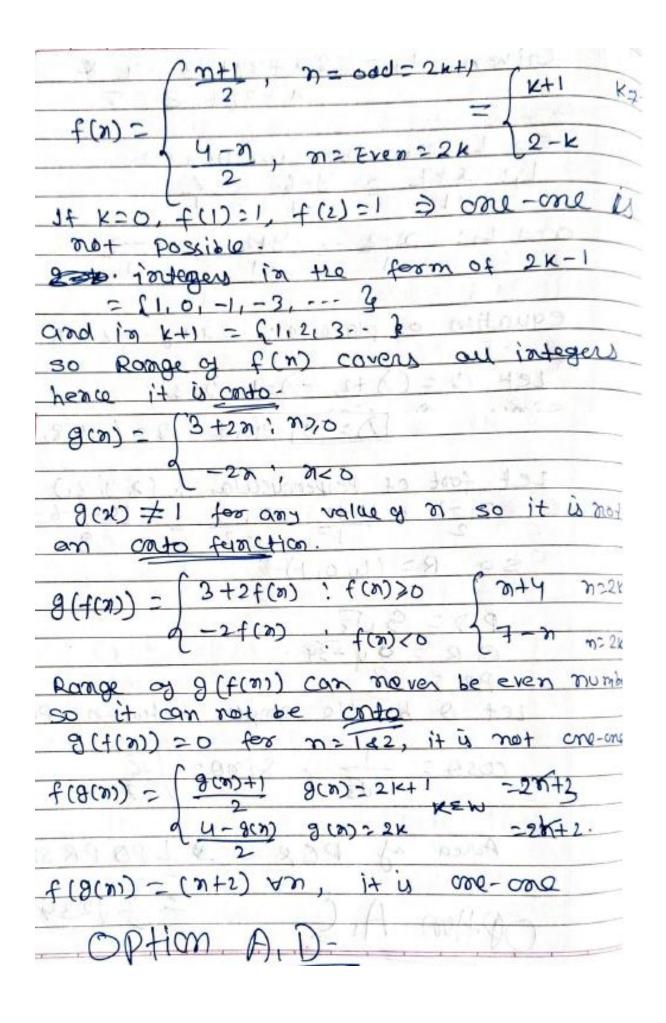
Ans.

(A,C) plane M: 22+7-22 = 6. Perpendicula

Q.6 Let \mathbb{N} denote the set of all natural numbers, and \mathbb{Z} denote the set of all integers. Consider the functions $f: \mathbb{N} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{N}$ defined by

$$f(n) = \begin{cases} (n+1)/2 & \text{if } n \text{ is odd,} \\ \\ (4-n)/2 & \text{if } n \text{ is even,} \end{cases}$$

and


$$g(n) = \begin{cases} 3 + 2n & \text{if } n \ge 0, \\ -2n & \text{if } n < 0. \end{cases}$$

Define $(g \circ f)(n) = g(f(n))$ for all $n \in \mathbb{N}$, and $(f \circ g)(n) = f(g(n))$ for all $n \in \mathbb{Z}$.

Then which of the following statements is (are) TRUE?

(A)	$g \circ f$ is NOT one-one and $g \circ f$ is NOT onto
(B)	$f \circ g$ is NOT one-one but $f \circ g$ is onto
(C)	g is one-one and g is onto
(D)	f is NOT one-one but f is onto

Ans. (A,D)

Q.7 Let
$$\mathbb{R}$$
 denote the set of all real numbers. Let $z_1 = 1 + 2i$ and $z_2 = 3i$ be two complex numbers, where $i = \sqrt{-1}$. Let

$$S = \{(x,y) \in \mathbb{R} \times \mathbb{R}: \; |x+iy-z_1| = 2|x+iy-z_2| \, \}.$$

Then which of the following statements is (are) TRUE?

(A)	S is a circle with centre $\left(-\frac{1}{3}, \frac{10}{3}\right)$
(B)	S is a circle with centre $\left(\frac{1}{3}, \frac{8}{3}\right)$
(C)	S is a circle with radius $\frac{\sqrt{2}}{3}$
(D)	S is a circle with radius $\frac{2\sqrt{2}}{3}$

Ans. (A,D)

(A,D)
$$|x+iy-(1+2i)|^{2} = 2|x+iy-3i|$$

$$\Rightarrow |(x-1)+i(y-2)|^{2} = 2|x+(y-3)i|$$

$$\Rightarrow (x-1)^{2}+(y-2)^{2} = 4(x^{2}+(y-3)^{2})$$

$$\Rightarrow 3x^{2}+3y^{2}+2x-20y+31=0$$

$$x^{2}+y^{2}+\frac{2x}{3}-\frac{20y}{3}+\frac{31}{3}=0$$

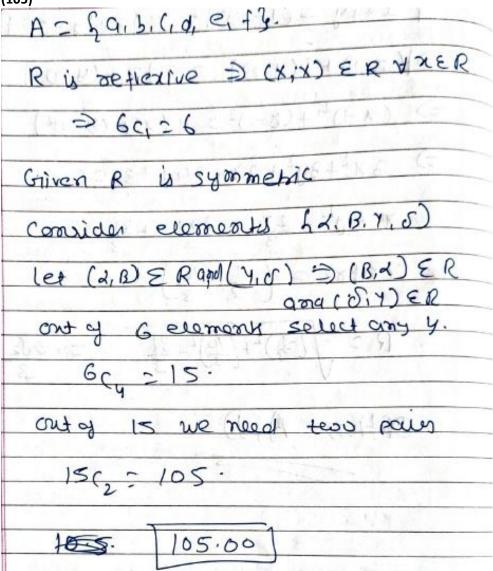
$$centre = \left(-\frac{1}{3}\right)^{2}+\left(\frac{10}{3}\right)^{2}-\frac{31}{3}=\frac{2\sqrt{2}}{3}$$

$$R = \sqrt{\left(-\frac{1}{3}\right)^{2}+\left(\frac{10}{3}\right)^{2}-\frac{31}{3}}=\frac{2\sqrt{2}}{3}$$

$$O(+ico) A_{1}$$

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO
 decimal places.
- Answer to each question will be evaluated according to the following marking scheme:


Full Marks : +4 If ONLY the correct numerical value is entered in the designated place;

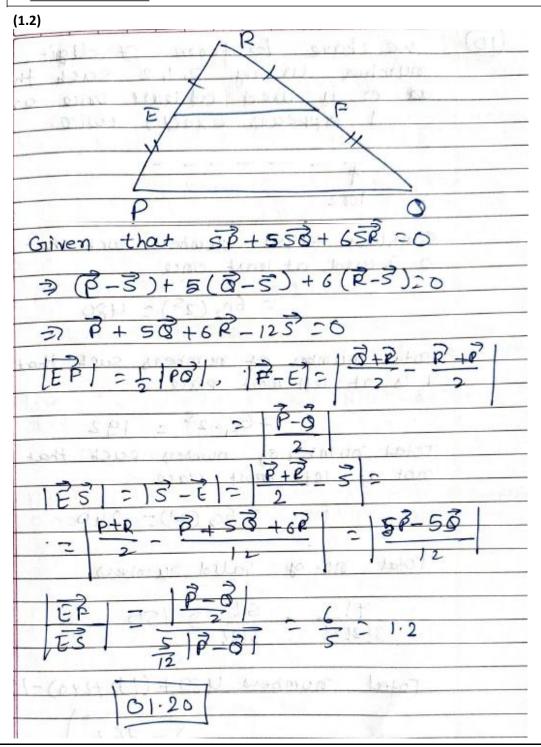
Zero Marks : 0 In all other cases.

Q.8 Let the set of all relations R on the set $\{a, b, c, d, e, f\}$, such that R is reflexive and symmetric, and R contains exactly 10 elements, be denoted by S.

Then the number of elements in S is

Ans. (105)

For any two points M and N in the XY-plane, let \overline{MN} denote the vector from M to N, and $\overrightarrow{0}$ denote the zero vector. Let P, Q and R be three distinct points in the XY-plane. Let S be a point inside the triangle ΔPQR such that


$$\overrightarrow{SP} + 5 \overrightarrow{SQ} + 6 \overrightarrow{SR} = \overrightarrow{0}.$$

Let E and F be the mid-points of the sides PR and QR, respectively. Then the value of

 $\frac{\text{length of the line segment } \textit{EF}}{\text{length of the line segment } \textit{ES}}$

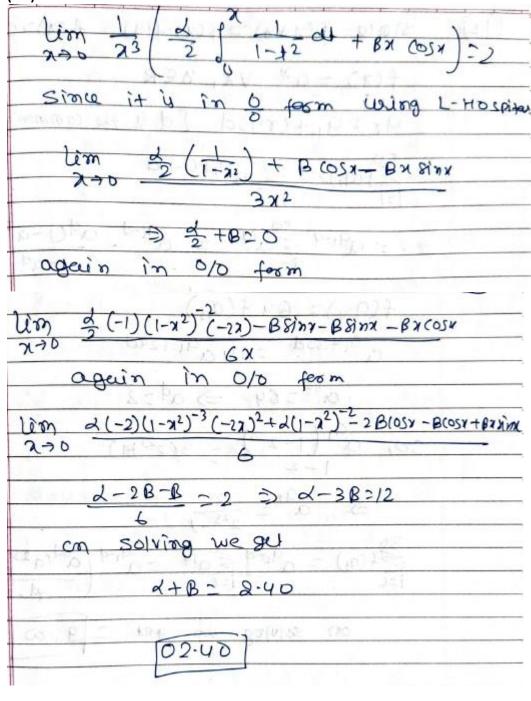
is .

Ans.

Q.10 Let S be the set of all seven-digit numbers that can be formed using the digits 0, 1 and 2. For example, 2210222 is in S, but 0210222 is **NOT** in S.

Then the number of elements x in S such that at least one of the digits 0 and 1 appears exactly twice in x, is equal to ______.

Ans. (762)


7 clight
we have to form 7 digit number using 0,1,2 such that
number wing of 12 and and
on o is used at least conce and
1 appears exactly twice.
1002
Consider to test mumbers such that
o is used at least conce
= 60, (25)= 480
Total number of numbers such that
1 is at left most place
$=6c_1 \cdot 2^5 = 192$
-0c, .2 = 192
Total number of numbers such that 1 is
not at left most place
= 60, (24) = 240
- 00 (2)- 24
Total me or halled broaders
Total no. of valid numbers
71 _ 61 - 150
3! 2! 2! 3!2!
10.9
Total numbers 480+ (192+240)-150
= 762
- 100

Q.11 Let α and β be the real numbers such that

$$\lim_{x \to 0} \frac{1}{x^3} \left(\frac{\alpha}{2} \int_{0}^{x} \frac{1}{1 - t^2} dt + \beta x \cos x \right) = 2.$$

Then the value of $\alpha + \beta$ is _____

Ans. (2.4)

Q.12 Let \mathbb{R} denote the set of all real numbers. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(x) > 0 for all $x \in \mathbb{R}$, and f(x + y) = f(x)f(y) for all $x, y \in \mathbb{R}$.

Let the real numbers a_1, a_2, \dots, a_{50} be in an arithmetic progression. If $f(a_{31}) = 64 f(a_{25})$, and

$$\sum_{i=1}^{50} f(a_i) = 3(2^{25} + 1),$$

then the value of

$$\sum_{i=6}^{30} f(a_i)$$

is

Ans. (96)

(96)
$2100 \pm (x+8) = \pm (x) \pm (x) = \pm (x) = 0$
f(x) = an Ax, NER
ar= a,+(r-1)d [d is the common dity
= - a = - a
$= a^{1} \left(\frac{1-a^{500}}{1-a^{40}} \right) = 3(2^{25}+1)$
f(a31) = 64 f(a25)
a6d=64 => ad=2
$50, \ \alpha^{9}(1-2^{50}) - 3(2^{25}+1)$
$\Rightarrow \alpha = \frac{3}{2^{25}}$
30 = f(a1) = a1,-a \(\frac{2}{2} \) aid = a1,-a \(\frac{a}{a} \)
on solving we set = 96.00

For all x > 0, let $y_1(x)$, $y_2(x)$, and $y_3(x)$ be the functions satisfying

$$\begin{split} \frac{dy_1}{dx} - (\sin x)^2 \, y_1 &= 0, \quad y_1(1) = 5 \,, \\ \frac{dy_2}{dx} - (\cos x)^2 \, y_2 &= 0, \quad y_2(1) = \frac{1}{3} \,, \\ \frac{dy_3}{dx} - \left(\frac{2-x^3}{x^3}\right) y_3 &= 0, \quad y_3(1) = \frac{3}{5e} \,, \end{split}$$

respectively. Then

$$\lim_{x \to 0^+} \frac{y_1(x)y_2(x)y_3(x) + 2x}{e^{3x} \sin x}$$

is equal to _____

Ans.

dy = (8in/x) 4, 20 $\int \frac{d\theta_1}{x_1} = \int \frac{1}{2} \sin^2 x \, dx = \int \frac{1}{2} - \cos 2x \, dx$ $|3||3|| = \frac{1}{2}(x - 8in2x) + (1$ -: Y(1) =5 => C= In5-1+ Sin2 A1 = 6 = (x - sings) + yn2 - 1 + sins dy = 2 cos2xdx = f1+cos2x dx. 11/45/2 = = (x + Mysx) + (5 ·: 82(1)= 3 > (2 = -723 - 1 - 8125 y = e = (x + 81 n2x) - 1 n3 - 1 - 81 n2 similarly 1 lim 4(x). 42(x).4x(x)+22 = 2.

SECTION 4 (Maximum Marks: 12)

- This section contains THREE (03) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if the option corresponding to the correct combination is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Q.14 Consider the following frequency distribution:

Value	4	5	8	9	6	12	11
Frequency	5	f_1	f_2	2	1	1	3

Suppose that the sum of the frequencies is 19 and the median of this frequency distribution is 6.

For the given frequency distribution, let α denote the mean deviation about the mean, β denote the mean deviation about the median, and σ^2 denote the variance.

Match each entry in List-I to the correct entry in List-II and choose the correct option.

List-I	List-II

(P)
$$7f_1 + 9f_2$$
 is equal to (1) 146

(Q)
$$19\alpha$$
 is equal to (2) 47

(R)
$$19\beta$$
 is equal to (4) 145

(S)
$$19\sigma^2$$
 is equal to (5) 55

(A)	$(P) \rightarrow (5)$	$(Q) \rightarrow (3)$	$(R) \rightarrow (2)$	$(S) \rightarrow (4)$
(B)	$(P) \rightarrow (5)$	$(Q) \rightarrow (2)$	$(R) \rightarrow (3)$	$(S) \rightarrow (1)$
(C)	$(P) \rightarrow (5)$	$(Q) \rightarrow (3)$	$(R) \rightarrow (2)$	$(S) \rightarrow (1)$
(D)	$(P) \rightarrow (3)$	$(Q) \rightarrow (2)$	$(R) \rightarrow (5)$	$(S) \rightarrow (4)$

Ans. (C)

α_{i}	fi	C·f	fixi
4	2	5	20
5	f,	2+1	20
6	1 2	6+41	6
	f ₂	6+f1+f2	24
8	2	8+11+12	18/10/
)1	3	11+f1+f2	33
12	1	12+f1+f2	12
			133
& Giv	rn. &	da	W.D. &
S OII V	12	+1.+1 = 1	9 > f1+f2=7
(+1		fizy and f	
6 +	1-101	TI-4 and F	2-3
orla x	1911	2 = 7 × 4 + 9	X3 ~ 55 / /5
	1	2 - 1 - 1 - 2	P→S1
Mean	(2)	51.3.	102
1,000	CV)	Efi = 1	135 = 7
- Men	m al= 1	271	
م - ١١٠٠٩	a) COENIG	thon about 7	= \frac{\xi-7) - 48}{\xi \xi \xi \xi \xi \xi \xi \xi \xi \xi
. 1540	- L- F		
		192 248	Q→3]
B= Me	ean devia	ution documen	lian = \fi(xi-m)
			< C:
	6 3	47 3 19B=	47 R-21
		13	K72
62 =	varion	ce = 80 146	26 26 18
		19	Act to the second
	25	1962 146	5-11
		11 10 10 10 10	
	OPT	ton c	the first the same of the same

Let \mathbb{R} denote the set of all real numbers. For a real number x, let [x] denote the greatest integer Q.15 less than or equal to x. Let n denote a natural number.

Match each entry in List-I to the correct entry in List-II and choose the correct option.

List-I

List-II

(1)

(P) The minimum value of n for which the function

is continuous on the interval [1, 2], is

(2)

(3) 5

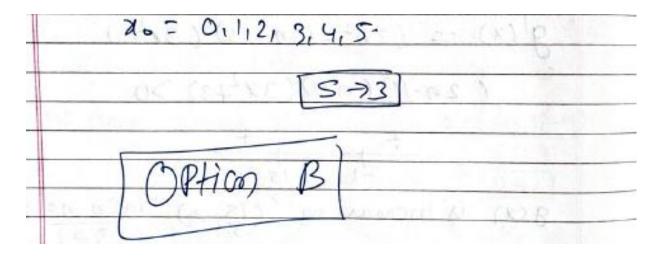
- (Q) The minimum value of n for which $g(x) = (2n^2 - 13n - 15)(x^3 + 3x),$ $x \in \mathbb{R}$, is an increasing function on \mathbb{R} , is
- (R) The smallest natural number n which is greater than 5, such that x = 3 is a point of local minima of $h(x) = (x^2 - 9)^n (x^2 + 2x + 3),$

(S) Number of $x_0 \in \mathbb{R}$ such that

is

(4) 6

 $l(x) = \sum_{k=0}^{\infty} \left(\sin|x - k| + \cos\left|x - k + \frac{1}{2}\right| \right),$


 $x \in \mathbb{R}$, is **NOT** differentiable at x_0 , is

(5) 10

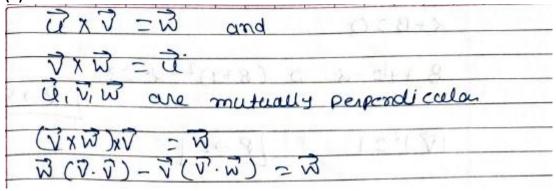
(A)	$(P) \rightarrow (1)$	$(Q) \rightarrow (3)$	$(R) \rightarrow (2)$	$(S) \rightarrow (5)$
(B)	$(P) \rightarrow (2)$	$(Q) \rightarrow (1)$	$(R) \rightarrow (4)$	$(S) \rightarrow (3)$
(C)	$(P) \rightarrow (5)$	$(Q) \rightarrow (1)$	$(R) \rightarrow (4)$	$(S) \rightarrow (3)$
(D)	$(P) \rightarrow (2)$	$(Q) \rightarrow (3)$	$(R) \rightarrow (1)$	$(S) \rightarrow (5)$

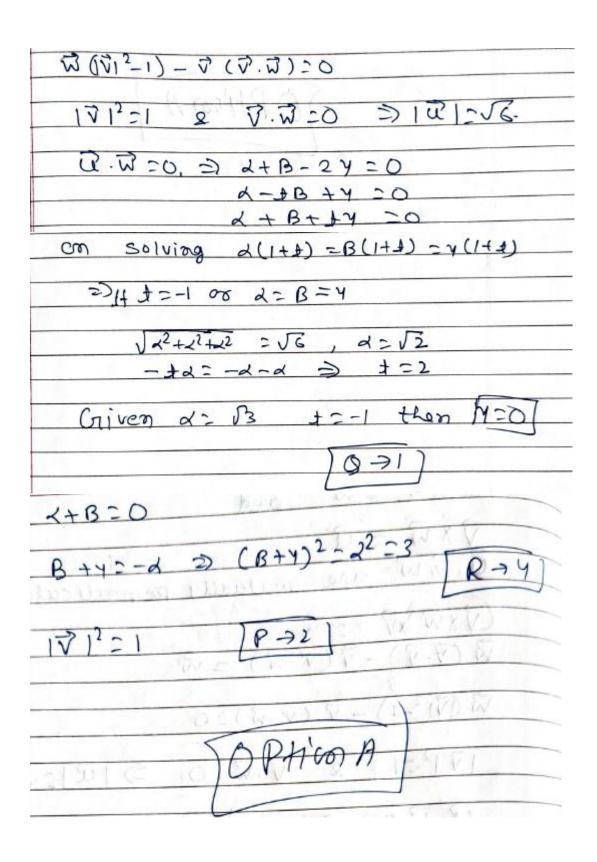
Ans.

$f(z)$: $\left[\begin{array}{c} x \\ \overline{55} \end{array}\right] \times \left[\begin{array}{c} x \\ \overline{55} \end{array}\right]$	
since f(x) is continuous in [1/2] its integral value should remain some.	
f(1) = f(2) = 6 (P → 2)	
since f(x) is continuous in [1/2] its integral value should regnain same.	
f(1) = f(2) = 6 (P → 2)	
$g'(x) = (2n^2 - 13n - 15)(3x^{2}+3)$	
$(2n-15)(n+1)(3x^2+3)>0$	
+ - + -1/2/5 collabora	
8 (x) is increasing 2 (15, 0) me'n n= 8	
$h(x) = (x^2-9)^{7}(x^2+2x+3)$	
h(3)=0, n>5.	
at $n=6$, $n(3+6) > h(3)$	
$n(3-\alpha) > n(3)$	
h(x) has local minima at 1=3 for my	
(R>4)	
$J(x) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$	
+(0s x-1	N
Since sin 2-x) à not diff at x 20	
cos x-2 is diff at x2d.	
J(x) is not diff. at x=d.	

Q.16 Let $\vec{w} = \hat{\imath} + \hat{\jmath} - 2\hat{k}$, and \vec{u} and \vec{v} be two vectors, such that $\vec{u} \times \vec{v} = \vec{w}$ and $\vec{v} \times \vec{w} = \vec{u}$. Let α, β, γ , and t be real numbers such that

$$\vec{u} = \alpha \hat{\imath} + \beta \hat{\jmath} + \gamma \hat{k}, -t \alpha + \beta + \gamma = 0, \alpha - t \beta + \gamma = 0, \text{ and } \alpha + \beta - t \gamma = 0.$$


Match each entry in List-I to the correct entry in List-II and choose the correct option.


List-II List-II

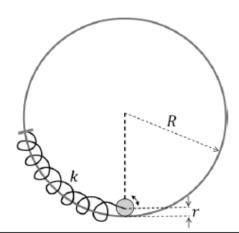
- (P) $|\vec{v}|^2$ is equal to (1) 0
- (Q) If $\alpha = \sqrt{3}$, then γ^2 is equal to (2) 1
- (3) 2
- (R) If $\alpha = \sqrt{3}$, then $(\beta + \gamma)^2$ is equal to (4) 3
- (S) If $\alpha = \sqrt{2}$, then t + 3 is equal to (5) 5

(A)	$(P) \rightarrow (2)$	$(Q) \rightarrow (1)$	$(R) \rightarrow (4)$	$(S) \longrightarrow (5)$
(B)	$(P) \rightarrow (2)$	$(Q) \rightarrow (4)$	$(R) \rightarrow (3)$	$(S) \rightarrow (5)$
(C)	$(P) \rightarrow (2)$	$(Q) \rightarrow (1)$	$(R) \rightarrow (4)$	$(S) \rightarrow (3)$
(D)	$(P) \rightarrow (5)$	$(Q) \rightarrow (4)$	$(R) \rightarrow (1)$	$(S) \rightarrow (3)$

Ans. (A)

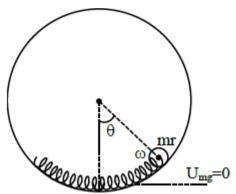
PHYSICS

SECTION 1 (Maximum Marks: 12)


- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct
 answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);


Negative Marks: -1 In all other cases.

Q.1 The center of a disk of radius r and mass m is attached to a spring of spring constant k, inside a ring of radius R > r as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following the Hooke's law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $T = \frac{2\pi}{\omega}$. The correct expression for ω is (g) is the acceleration due to gravity):

(A)	$\sqrt{\frac{2}{3}\left(\frac{g}{R-r} + \frac{k}{m}\right)}$	(B)	$\sqrt{\frac{2g}{3(R-r)} + \frac{k}{m}}$
(C)	$\sqrt{\frac{1}{6} \left(\frac{g}{R-r} + \frac{k}{m} \right)}$	(D)	$\sqrt{\frac{1}{4} \left(\frac{g}{R-r} + \frac{k}{m} \right)}$

Ans. (A)

$$E = \frac{1}{2}k(R-r)^{2}\theta^{2} + mg(R-r)(1-\cos\theta) + \frac{1}{2}mv^{2} + \frac{1}{2}\frac{mr^{2}}{2}\omega^{2}$$

Differentiating wrt t,

$$0 = \frac{1}{2}k(R-r)^2 \cdot 2\theta \frac{d\theta}{dt} + mg(R-r) \cdot \frac{d}{dt} \left(2\frac{\theta^2}{4}\right) + \frac{1}{2}m \cdot 2v \frac{dv}{dt} + \frac{mr^2}{4} \cdot 2\omega \frac{d\omega}{dt}$$

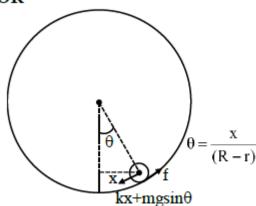
$$\Rightarrow 0 = k(R - r)^{2} \theta \frac{d\theta}{dt} + mg(R - r)\theta \frac{d\theta}{dt} + mv \frac{dv}{dt} + \frac{mr^{2}}{2} \omega \frac{d\omega}{dt}$$

Also,
$$\frac{d\theta}{dt} = \frac{V}{(R-r)} \Rightarrow \frac{d^2\theta}{dt^2} = \frac{1}{(R-r)} \frac{dv}{dt} = \frac{1}{R-r} a$$

$$\therefore k(R-r)^2 \cdot \theta \frac{V}{R-r} + mg(R-r)\theta \frac{V}{R-r} = -mv\alpha r - \frac{mr^2}{2} \frac{v}{r} \alpha$$

$$\Rightarrow \mathbf{k}(\mathbf{R} - \mathbf{r}) + \mathbf{mg}\theta = -\frac{3}{2}\mathbf{mr}\alpha$$

$$\Rightarrow -[k(R-r) + mg]\theta = \frac{3}{2}m(R-r)\frac{d^2\theta}{dt^2}$$

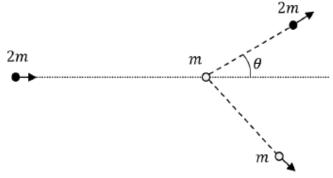

$$\Rightarrow -\frac{2}{3} \left[\frac{k}{m} + \frac{g}{R-r} \right] = \frac{d^2\theta}{dt^2}$$

Compering with standard equation of SHM

$$\omega = \sqrt{\frac{2}{3} \left[\frac{k}{m} + \frac{g}{R - r} \right]}$$

Hence answer is option(A)

OR


$$kx + mgsin\theta - f = ma$$

$$\Rightarrow$$
 kx + mg $\frac{x}{(R-r)}$ - f = ma

$$\mathbf{fr} = \frac{\mathbf{mr}^2}{2} \cdot \alpha \Rightarrow \mathbf{f} = \frac{\mathbf{ma}}{2}$$

$$\therefore \omega = \sqrt{\frac{2}{3} \left[\frac{k}{m} + \frac{g}{R - r} \right]}$$

Q.2 In a scattering experiment, a particle of mass 2m collides with another particle of mass m, which is initially at rest. Assuming the collision to be perfectly elastic, the maximum angular deviation θ of the heavier particle, as shown in the figure, in radians is:

(A)	π	(B)	$\tan^{-1}\left(\frac{1}{2}\right)$	(C)	$\frac{\pi}{2}$	(D)	<u>π</u>
-----	---	-----	-------------------------------------	-----	-----------------	-----	----------

Ans.

$$2mv_1 = 2mv_{1f}\cos\theta + 2mv_{2f}\cos\phi \qquad \dots (i)$$

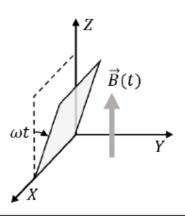
$$2m_{1f}\sin\theta = mv_{2f}\sin\phi \qquad(ii)$$

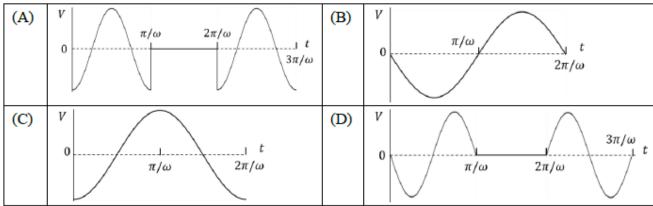
$$\frac{1}{2}(2m)v_1^2 + \frac{1}{2}m(0)^2 = \frac{1}{2}(2m)v_{1f}^2 + \frac{1}{2}mv_{2f}^2$$

$$2v_1^2 = 2v_{1f}^2 + v_{2f}^2$$
(iii)

From (i), (ii), (iii),

$$3v_{1f}^2 - 4v_1v_{1f}\cos\theta + v_1^2 = 0$$


$$(-4v_1\cos\theta)^2 - 4(3)(v_1^2) \ge 0$$

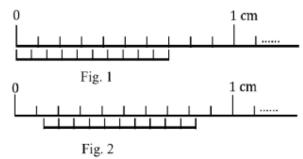

$$\cos^2\theta \ge \frac{3}{4}$$

$$\cos^2\theta \ge \frac{\sqrt{3}}{2}$$

$$\theta = \frac{\pi}{6}$$

A conducting square loop initially lies in the XZ plane with its lower edge hinged along the X-axis. Only in the region $y \ge 0$, there is a time dependent magnetic field pointing along the Z-direction, $\vec{B}(t) = B_0(\cos \omega t)\hat{k}$, where B_0 is a constant. The magnetic field is zero everywhere else. At time t = 0, the loop starts rotating with constant angular speed ω about the X axis in the clockwise direction as viewed from the +X axis (as shown in the figure). Ignoring self-inductance of the loop and gravity, which of the following plots correctly represents the induced e.m.f. (V) in the loop as a function of time:

Ans. (A)


$$\phi = \mathbf{B}_0 \cos \omega t \mathbf{A} \sin \omega t = \frac{\mathbf{B}_0 \mathbf{A} \sin 2\omega t}{2}$$

$$\epsilon = -\frac{d\phi}{dt} = -B_0 A \cos 2\omega t = \left(0 \le t \le \frac{\pi}{\omega}\right)$$

$$\varepsilon = 0 \quad \left(\frac{\pi}{\omega} \le t \le \frac{2\pi}{\omega}\right)$$

Ans. Option (A)

Q.4 Figure 1 shows the configuration of main scale and Vernier scale before measurement. Fig. 2 shows the configuration corresponding to the measurement of diameter *D* of a tube. The measured value of *D* is:

(A)	0.12 cm
(B)	0.11 cm
(C)	0.13 cm
(D)	0.14 cm

Ans. (C)

10 MSD = 1 cm; 1 MSD = 0.1 cm

7 MSD = 10 VSD

1 VSD = 0.07 cm

Reading = 2 MSD - VSD

= 0.2 cm - 0.07 cm = 0.13 cm

Ans. Option (C)

SECTION 2 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of

which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a

correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -2 In all other cases.

For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct
answers, then

answers, then

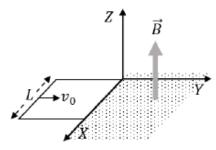
choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

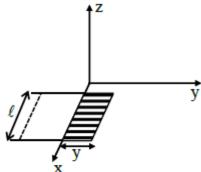
choosing ONLY (A) will get +1 mark;


choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option (i.e. the question is unanswered) will get 0 marks; and

choosing any other combination of options will get -2 marks.


A conducting square loop of side L, mass M and resistance R is moving in the XY plane with its edges parallel to the X and Y axes. The region $y \ge 0$ has a uniform magnetic field, $\vec{B} = B_0 \hat{k}$. The magnetic field is zero everywhere else. At time t = 0, the loop starts to enter the magnetic field with an initial velocity $v_0 \hat{j}$ m/s, as shown in the figure. Considering the quantity $K = \frac{B_0^2 L^2}{RM}$ in appropriate units, ignoring self-inductance of the loop and gravity, which of the following statements is/are correct:

- (A) If $v_0 = 1.5KL$, the loop will stop before it enters completely inside the region of magnetic field.
- (B) When the complete loop is inside the region of magnetic field, the net force acting on the loop is zero.
- (C) If $v_0 = \frac{KL}{10}$, the loop comes to rest at $t = \left(\frac{1}{K}\right) \ln \left(\frac{5}{2}\right)$.
- (D) If $v_0 = 3KL$, the complete loop enters inside the region of magnetic field at time $t = \left(\frac{1}{K}\right) \ln\left(\frac{3}{2}\right)$.

Ans.

(B,D)

$$\Rightarrow \frac{-d\phi}{dt} = \frac{d}{dt} (B_0 \times \ell \times y) = BV\ell$$

$$\vec{F} = B(\hat{i})(\ell)(-\hat{j})$$

$$ma = -B_0 \left[\frac{B_0 V \ell}{R} \right] (\ell)$$

$$a = -\frac{B_0^2 \ell^2 V}{mR}$$

Also
$$K = \frac{B_0^2 \ell^2 V}{RM}$$

So
$$[a = -kv]$$

$$\frac{dv}{dt} = -kv$$

$$\int_{v_0}^{v} \frac{dv}{dt} = \int_{0}^{t} -kdt$$

$$\ell n \frac{v}{v_0} = -kt$$

$$[v = v_0 e^{-kt}] \qquad \dots (i)$$

$$\frac{dx}{dt} = v_0 e^{-kt} \qquad (x \le \ell)$$

$$\int\limits_0^x dx = \int\limits_0^t v_0 e^{-kt} dt$$

$$=\frac{\mathbf{v_0}}{\mathbf{k}}(1-\mathbf{e}^{-\mathbf{k}t})$$

When $x = \ell$

$$\ell = \frac{v_0}{k} (1 - e^{-kt})$$

Option (D) $(v_0 = 3k\ell)$

$$\ell = \frac{3k\ell}{k}(1 - e^{-kt})$$

$$\frac{1}{3} = 1 - e^{-kt}$$

$$f\frac{2}{3} = 2e^{-kt}$$

$$-kt = 8n\left(\frac{2}{3}\right)$$

$$t = \frac{1}{k} \ell n \left(\frac{2}{3} \right)$$

Complete loop will enter at $t = \frac{1}{k} \ell n \left(\frac{2}{3} \right)$

Option (B)

$$\frac{d\phi}{dt} = 0, \, \underline{e} = 0, \, i = 0, \, F = 0$$

Ans. B,D)

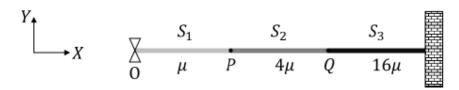
Q.6 Length, breadth and thickness of a strip having a uniform cross section are measured to be 10.5 cm, 0.05 mm, and 6.0 μ m, respectively. Which of the following option(s) give(s) the volume of the strip in cm³ with correct significant figures:

(A)	3.2×10^{-5}	(B)	32.0×10^{-6}	(C)	3.0×10^{-5}	(D)	3×10^{-5}

Ans. (D)

 $L = 10.5 \text{ cm} \rightarrow 3 \text{ significant digits}$

 $b = 0.05 \text{ cm} \rightarrow 1 \text{ significant digit}$


 $t = 6.0 \ \mu m \rightarrow 2 \ significant \ digits$

Volume, V = Lbt must have only 1 significant digit

$$\Rightarrow$$
 V = 10.5 × 0.05 × 10⁻¹ × 6.0 × 10⁻⁴ cm³

$$= 3 \times 10^{-5} \text{ cc}$$

Consider a system of three connected strings, S_1 , S_2 and S_3 with uniform linear mass densities μ kg/m, 4μ kg/m and 16μ kg/m, respectively, as shown in the figure. S_1 and S_2 are connected at the point P, whereas S_2 and S_3 are connected at the point Q, and the other end of S_3 is connected to a wall. A wave generator 0 is connected to the free end of S_1 . The wave from the generator is represented by $y = y_0 \cos(\omega t - kx)$ cm, where y_0 , ω and k are constants of appropriate dimensions. Which of the following statements is/are correct:

- (A) When the wave reflects from P for the first time, the reflected wave is represented by $y = \alpha_1 y_0 \cos(\omega t + kx + \pi)$ cm, where α_1 is a positive constant.
- (B) When the wave transmits through P for the first time, the transmitted wave is represented by $y = \alpha_2 y_0 \cos(\omega t kx)$ cm, where α_2 is a positive constant.
- (C) When the wave reflects from Q for the first time, the reflected wave is represented by $y = \alpha_3 y_0 \cos(\omega t kx + \pi)$ cm, where α_3 is a positive constant.
- (D) When the wave transmits through Q for the first time, the transmitted wave is represented by $y = \alpha_4 y_0 \cos(\omega t 4kx)$ cm, where α_4 is a positive constant.

Ans. (A,D)

 $y_1 = y_0 \cos(\omega t - kx)$

when wave going from Rarer to Denser,

$$y_r = A_r \cos(\omega t + kx + \pi)$$

$$y_r = a_1 y_0 \cos (\omega t + kx + \pi)$$

option (A) correct

(B) For transmitted from point P

$$y_t = A_t \cos [\omega t - k_1 x]$$

$$\frac{k_1}{k} = \sqrt{\frac{\mu_1}{\mu}} = \frac{k_1}{k} = \sqrt{\frac{4\mu}{\mu}}$$

$$k_1 = 2k$$

 $y_t = a_2 y_0 \cos \left[\omega t - 2kx \right]$

option (B) incorrect

(C) when reflected from Q

$$y_i = a_2 y_0 \cos [\omega t - 2kx]$$

$$y_r = a_3 y_0 \cos \left[\omega t + 2kx + \pi\right]$$

option (C) incorrect

(D) when transmitted from Q

$$y_t = a_4 y_0 \cos \left[\omega t = k_2 x\right]$$

$$\frac{k_2}{2k} = \sqrt{\frac{16\mu}{4\mu}} \Rightarrow k_2 = 4k$$

 $y_t = a_4 y_0 \cos [\omega t - 4kx]$ option (D) correct

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO
 decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct numerical value is entered in the designated place;

Zero Marks: 0 In all other cases.

Q.8 A person sitting inside an elevator performs a weighing experiment with an object of mass 50 kg. Suppose that the variation of the height y (in m) of the elevator, from the ground, with time t (in s) is given by $y = 8 \left[1 + \sin\left(\frac{2\pi t}{T}\right) \right]$, where $T = 40\pi$ s. Taking acceleration due to gravity, g = 10 m/s², the maximum variation of the object's weight (in N) as observed in the experiment is _____

Ans. (2)

$$y = 8 + 8 \sin \frac{2\pi t}{T}$$

With respect to elevator, variation in weight will be

$$\Delta W = m(\Delta a)_{max}$$

$$\Delta W = m \times 2\omega^2 A$$

Here elevator is performing SHM

$$\Delta W = 2m \times \left(\frac{2\pi}{T}\right)^2 \times A \ N$$

$$\Delta W = 2 \times 50 \times \left(\frac{2\pi}{40\pi}\right)^2 \times 8 \text{ N}$$

$$\Delta W = 2 \times 50 \times \frac{1}{400} \times 8 \text{ N}$$

$$\Delta W = \frac{800}{400} N = 2N$$

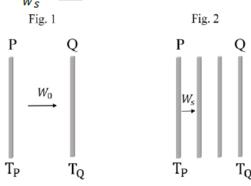
Q.9 A cube of unit volume contains 35×10^7 photons of frequency 10^{15} Hz. If the energy of all the photons is viewed as the average energy being contained in the electromagnetic waves within the same volume, then the amplitude of the magnetic field is $\alpha \times 10^{-9}$ T. Taking permeability of free space $\mu_0 = 4\pi \times 10^{-7}$ Tm/A, Planck's constant $h = 6 \times 10^{-34}$ Js and $\pi = \frac{22}{7}$, the value of α is _____

Ans. (23)

Total energy in cube = $35 \times 10^7 \times \text{hf}$

$$= 35 \times 10^{7} \times 6 \times 10^{-34} \times 10^{15}$$

$$= 2.1 \times 10^{-10} \text{ J}$$


Total energy of EM waves = $\frac{B_0^2}{2\mu_0} \times \text{volume}$

$$B_0^2 = \frac{2.1 \times 10^{-10} \times 8 \pi \times 10^{-7}}{1^3}$$

$$\Rightarrow$$
 B₀ = 22.98 × 10⁻⁹ T

Ans. 22.98

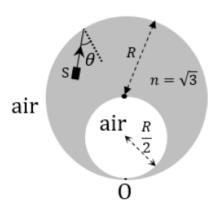
Two identical plates P and Q, radiating as perfect black bodies, are kept in vacuum at constant absolute temperatures T_P and T_Q , respectively, with $T_Q < T_P$, as shown in Fig. 1. The radiated power transferred per unit area from P to Q is W_0 . Subsequently, two more plates, identical to P and Q, are introduced between P and Q, as shown in Fig. 2. Assume that heat transfer takes place only between adjacent plates. If the power transferred per unit area in the direction from P to Q (Fig. 2) in the steady state is W_S , then the ratio $\frac{W_0}{W_S}$ is ____

Ans.

(3)

Initially:

$$W_{0} = \sigma \left(T_{p}^{4} - T_{Q}^{4} \right) \qquad \left| \begin{array}{c} T_{p} & T_{Q} \\ \\ \hline \\ W_{0} \end{array} \right|$$


Finally:

Putting heat currents equal in steady state :

$$\begin{bmatrix} T_P & T_1 & T_2 & T_Q \\ \hline W_S & W_S \end{bmatrix} \xrightarrow{W_S} \begin{bmatrix} T_Q & T_Q & T_Q \\ \hline W_S & W_S \end{bmatrix}$$

$$\begin{split} \sigma\left(T_{p}^{4}-T_{1}^{4}\right) &= \sigma\left(T_{1}^{4}-T_{2}^{4}\right) \\ \sigma\left(T_{1}^{4}-T_{2}^{4}\right) &= \sigma\left(T_{2}^{4}-T_{Q}^{4}\right) \\ \text{Adding:} \\ T_{p}^{4}-T_{1}^{4} &= T_{2}^{4}-T_{Q}^{4} \\ &\Rightarrow T_{1}^{4}+T_{2}^{4} = T_{p}^{4}+T_{Q}^{4} \\ \text{and} &\Rightarrow T_{1}^{4}-T_{2}^{4} = T_{p}^{4}-T_{1}^{4} \\ \text{Adding:} &T_{1}^{4} = \frac{2T_{p}^{4}+T_{Q}^{4}}{3} \\ \text{So } W_{s} &= \sigma\left(T_{p}^{4}-T_{1}^{4}\right) \\ &= \sigma\left(T_{p}^{4}-\left(\frac{2T_{p}^{4}+T_{Q}^{4}}{3}\right)\right) = \sigma\left(\frac{T_{p}^{4}-T_{Q}^{4}}{3}\right) \\ \text{hence} &\frac{W_{S}}{W_{o}} = 3 \end{split}$$

A solid glass sphere of refractive index $n = \sqrt{3}$ and radius R contains a spherical air cavity of radius $\frac{R}{2}$, as shown in the figure. A very thin glass layer is present at the point O so that the air cavity (refractive index n = 1) remains inside the glass sphere. An unpolarized, unidirectional and monochromatic light source S emits a light ray from a point inside the glass sphere towards the periphery of the glass sphere. If the light is reflected from the point O and is fully polarized, then the angle of incidence at the inner surface of the glass sphere is θ . The value of $\sin \theta$ is ____

Ans.

$$\tan \alpha = \sqrt{3}$$

$$\alpha = 60^{\circ}$$

$$\sqrt{3}\sin\beta = 1 \times \sin\alpha \Rightarrow \beta = 30^{\circ}$$

$$\frac{R}{2\sin 30^{\circ}} = \frac{x}{\sin 120^{\circ}}$$

$$\frac{R}{\sin 120^{\circ}} = \frac{R\sqrt{3}}{2 \times \sin \theta} \Rightarrow \sin \theta = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}$$

$$\sin \theta = \frac{3}{4}$$

A single slit diffraction experiment is performed to determine the slit width using the equation, $\frac{bd}{D}$ $m\lambda$, where b is the slit width, D the shortest distance between the slit and the screen, d the distance between the m^{th} diffraction maximum and the central maximum, and λ is the wavelength. D and d are measured with scales of least count of 1 cm and 1 mm, respectively. The values of λ and m are known precisely to be 600 nm and 3, respectively. The absolute error (in μ m) in the value of b estimated using the diffraction maximum that occurs for m = 3 with d = 5 mm and D = 1 m is

Ans.

(75.6 OR 78.75)

If we can consider

$$\begin{split} \frac{\Delta b}{b} &= \frac{\Delta m}{m} + \frac{\Delta \lambda}{\lambda} + \frac{\Delta D}{D} + \frac{\Delta d}{d} \\ \frac{\Delta b}{b} &= 0 + 0 + \frac{1cm}{1m} + \frac{1mm}{5mm} = 0.21 \\ b &= \frac{m\lambda D}{d} = \frac{3 \times 600 \times 10^{-3} \times 1}{5 \times 10^{-3}} \mu m = 360 \ \mu m \\ \Rightarrow \Delta b &= 360 \times 0.21 \ \mu m = 75.6 \ \mu m \end{split}$$

Q.13

Consider an electron in the n=3 orbit of a hydrogen-like atom with atomic number Z. At absolute temperature T, a neutron having thermal energy k_BT has the same de Broglie wavelength as that of this electron. If this temperature is given by $T = \frac{Z^2h^2}{\alpha\pi^2a_0^2m_Nk_B}$, (where h is the Planck's constant, k_B is the Boltzmann constant, m_N is the mass of the neutron and a_0 is the first Bohr radius of hydrogen atom) then the value of α is ____

Ans.

Ans. (72)
$$\frac{\text{mv}^2}{\text{r}} = \frac{\text{KZe}^2}{\text{r}^2}$$

$$\text{mv}^2 \text{r} = \frac{1}{4\pi \in_0} \text{Ze}^2 \qquad \dots (1)$$

$$\text{mvr} = \frac{\text{nh}}{2\pi} \qquad \dots (2)$$

$$(1)/(2) \text{ gives}$$

$$v = \frac{\frac{\text{Ze}^2}{4\pi \in_0}}{\frac{\text{nh}}{2\pi}} = \frac{\text{Ze}^2}{2 \in_0 \text{ nh}}$$

$$\frac{h}{mv} = \frac{h}{\sqrt{2m_N \cdot K_B T}}$$

$$T = \frac{m^2 Z^2 e^4}{8 \in_0^2 n^2 h^2 m_N K_B}$$

$$n = 3 \Rightarrow T = \frac{m^2 Z^2 e^4}{72 \in_0^2 h^2 m_N K_B}$$

$$\frac{(1)}{(2)^2} \Rightarrow \frac{1}{\text{mr}} = \frac{\frac{Ze^2}{4\pi \in_0}}{\frac{n^2h^2}{4\pi^2}}$$

$$r = \frac{n^2 h^2 \in_0}{\pi Z e^2 \cdot m} \implies a_0 = \frac{h^2 \in_0}{\pi e^2 m}$$

$$a_0^2 = \frac{h^4 \in _0^2}{\pi^2 e^4 m^2}$$

$$Ta_0^2 = \frac{m^2 Z^2 e^4}{72 \in_0 h^2 m_N k_B} \cdot \frac{h^4 \in_0^2}{\pi^2 e^4 m^2}$$

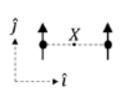
$$T = \frac{h^2 Z^2}{72\pi^2 a_0^2 m_N k_B} \Rightarrow \alpha = 72$$

SECTION 4 (Maximum Marks: 12)

- This section contains THREE (03) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if the option corresponding to the correct combination is chosen;

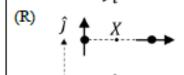
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

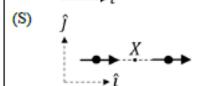

Negative Marks: -1 In all other cases.

List-I shows four configurations, each consisting of a pair of ideal electric dipoles. Each dipole has a dipole moment of magnitude p, oriented as marked by arrows in the figures. In all the configurations the dipoles are fixed such that they are at a distance 2r apart along the x direction. The midpoint of the line joining the two dipoles is X. The possible resultant electric fields \vec{E} at X are given in List-II.

Choose the option that describes the correct match between the entries in List-I to those in List-II.

List-I


(P)


List-II

(1) $\vec{E} = 0$

(2)
$$\vec{E} = -\frac{p}{2\pi\epsilon_0 r^3}\hat{j}$$

(3)
$$\vec{E} = -\frac{p}{4\pi\epsilon_0 r^3}(\hat{\imath} - \hat{\jmath})$$

$$(4) \vec{E} = \frac{p}{4\pi\epsilon_0 r^3} (2\hat{\imath} - \hat{\jmath})$$

$$(5) \vec{E} = \frac{p}{\pi \epsilon_0 r^3} \hat{\iota}$$

(A)	$P\rightarrow 3, Q\rightarrow 1, R\rightarrow 2, S\rightarrow 4$
(B)	$P\rightarrow 4, Q\rightarrow 5, R\rightarrow 3, S\rightarrow 1$
(C)	$P\rightarrow 2, Q\rightarrow 1, R\rightarrow 4, S\rightarrow 5$
(D)	P→2, O→1, R→3, S→5

Ans.

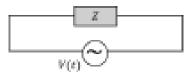
$$\boldsymbol{E}_{net} = \frac{-2k\boldsymbol{P}}{r^3}\,\hat{\boldsymbol{j}}$$

$$E_{\text{net}} = \frac{-P\,\hat{j}}{2\pi \in_0 r^3}$$

$$(Q) \frac{E_{net}}{E} = 0$$

$$E_{net} = 0$$

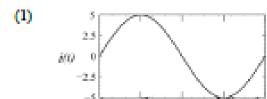
$$(R) \xrightarrow{\frac{2kP}{r^2}} \frac{2P\hat{i}}{4\pi \in_0 r^3} - \frac{P\hat{j}}{4\pi \in_0 r^3}$$

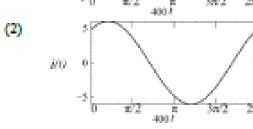

$$\frac{2P\hat{i}}{4\pi \in_0 r^3} - \frac{P\hat{j}}{4\pi \in_0 r^3}$$

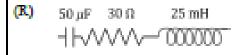
(S)
$$\xrightarrow{2E}$$
 $E_{net} = \frac{4kP\hat{i}}{r^3}$

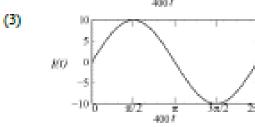
$$E_{net} = \frac{4kP \,\hat{i}}{r^3}$$

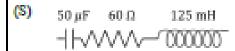
$$P \rightarrow 2, Q \rightarrow 1, R \rightarrow 4, S \rightarrow 5$$

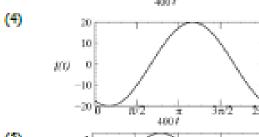

A circuit with an electrical load having impedance Z is connected with an AC source as shown in the diagram. The source voltage varies in time as $V(t) = 300 \sin(400t)$ V, where t is time in s. List-I shows various options for the load. The possible currents l(t) in the circuit as a function of time are given in List-II.

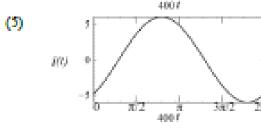



Choose the option that describes the correct match between the entries in List-I to those in List-


List-II


List-I





(A)	P→3, Q→5, R→2, S→1
(B)	P→1, Q→5, R→2, S→3
(C)	P→3, Q→4, R→2, S→1
(D)	P→1, Q→4, R→2, S→5

Ans. (A)

For P

$$i = \frac{V}{R} = 10 \sin 400t \Rightarrow (3)$$

For Q

$$X_L = \omega L = 400 \times 100 \times 10^{-3} = 40\Omega$$

$$\therefore Z = 50\Omega$$

$$\therefore i = \frac{300}{50} \sin(400t - 53^\circ) \text{ [current will lag by } \tan^{-1} \frac{X_L}{R} \text{]} \Rightarrow (5)$$

For R

$$X_C = \frac{10^6}{400 \times 50} \Omega = 50\Omega$$
 and $X_L = 400 \times 25 \times 10^{-3} = 10\Omega$

$$\therefore Z = 50\Omega$$

$$\therefore i = \frac{300}{50} \sin(400t + 53^\circ) \qquad \text{[Current will lead by } \tan^{-1} \frac{X_C - X_L}{R}] \Rightarrow (2)$$

For S

$$X_{\text{\tiny C}} = 50\Omega$$
 and $X_{\text{\tiny L}} = 400 \times 125 \times 10^{\text{\tiny -3}} = 50\Omega$

$$R = 60\Omega$$

$$\therefore i = \frac{300}{60} \sin(400t) \quad X_L = X_C \Rightarrow \text{Resonance} \Rightarrow (1)$$

List-I shows various functional dependencies of energy (E) on the atomic number (Z). Energies associated with certain phenomena are given in List-II.

Choose the option that describes the correct match between the entries in List-I to those in List-II.

List-I

- (P) $E \propto Z^2$
- (Q) $E \propto (Z-1)^2$
- (R) $E \propto Z(Z-1)$
- (S) E is practically independent of Z

List-II

- (1) energy of characteristic x-rays
- (2) electrostatic part of the nuclear binding energy for stable nuclei with mass numbers in the range 30 to 170
- (3) energy of continuous x-rays
- (4) average nuclear binding energy per nucleon for stable nuclei with mass number in the range 30 to 170
- (5) energy of radiation due to electronic transitions from hydrogen-like atoms

(A)	P→4, Q→3, R→1, S→2
(B)	$P\rightarrow 5$, $Q\rightarrow 2$, $R\rightarrow 1$, $S\rightarrow 4$
(C)	$P\rightarrow 5$, $Q\rightarrow 1$, $R\rightarrow 2$, $S\rightarrow 4$
(D)	P→3, Q→2, R→1, S→5

Ans. (C)

(P) Energy of H-like atom is

$$E = -13.6 \frac{Z^2}{n^2}$$
 So

$$E \propto Z^2$$

$$P \rightarrow (5)$$

(Q) Energy of characteristic X-ray by moseley's correction

$$E = -13.6(Z-1)^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$
 So

$$E \propto (Z-1)^2$$

$$Q \rightarrow (1)$$

(R) Electrostatics binding energy is proportional to Z(Z-1)

$$R \rightarrow (2)$$

(S) For stable nuclei with mass no. in range 30 to 170. Binding energy per nucleon is constant & graph is straight line

$$S \rightarrow (4)$$

Ans. (C) is correct

CHEMISTRY

SECTION 1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct
 answer.
- · For each question, choose the option corresponding to the correct answer.
- · Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Q.1	The heating of NH ₄ NO ₂ at 60-70 °C and NH ₄ NO ₃ at 200-250 °C is associated with the formation
	of nitrogen containing compounds \mathbf{X} and \mathbf{Y} , respectively. \mathbf{X} and \mathbf{Y} , respectively, are

(A)	N ₂ and N ₂ O
(B)	NH ₃ and NO ₂
(C)	NO and N ₂ O
(D)	N ₂ and NH ₃

Ans. (A)

$$NH_4NO_2 \xrightarrow{\Delta \atop 60-70^{\circ}C} N_2 + 2H_2O$$

$$NH_4NO_3 \xrightarrow{\Delta} N_2O + 2H_2O$$

Q.2 The correct order of the wavelength maxima of the absorption band in the ultraviolet-visible region for the given complexes is

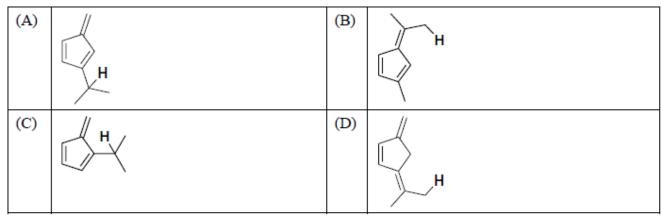
(A)	$[\text{Co}(\text{CN})_6]^{3-} \leq [\text{Co}(\text{NH}_3)_6]^{3+} \leq [\text{Co}(\text{NH}_3)_5(\text{H}_2\text{O})]^{3+} \leq [\text{Co}(\text{NH}_3)_5(\text{Cl})]^{2+}$
(B)	$[\text{Co(NH}_3)_5(\text{Cl})]^{2+} \leq [\text{Co(NH}_3)_5(\text{H}_2\text{O})]^{3+} \leq [\text{Co(NH}_3)_6]^{3+} \leq [\text{Co(CN})_6]^{3-}$
(C)	$[Co(CN)_6]^{3-} < [Co(NH_3)_5(C1)]^{2+} < [Co(NH_3)_5(H_2O)]^{3+} < [Co(NH_3)_6]^{3+}$
(D)	$[Co(NH_3)_6]^{3+} < [Co(CN)_6]^{3-} < [Co(NH_3)_5(Cl)]^{2+} < [Co(NH_3)_5(H_2O)]^{3+}$

Ans. (A)

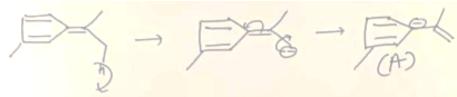
$$\Delta_{\rm O} \propto \frac{1}{\lambda}$$

.. The absorb wave length order is

$$[Co(CN)_6]^{3-} < [Co(NH_3)_6]^{3+} < [Co(NH_3)_5H_2O]^{3+} < [Co(NH_3)_5Cl]^{2+}$$


Q.3 One of the products formed from the reaction of permanganate ion with iodide ion in neutral aqueous medium is

(A)	I_2	(B)	IO ₃ ⁻	(C)	IO ₄ -	(D)	IO ₂ -


Ans. (B)

$$I^- + 2MnO_4^- + H_2O \xrightarrow{\text{Neutral solution}} 2MnO_2 + IO_3^- + 2OH^-$$

Q.4 Consider the depicted hydrogen (**H**) in the hydrocarbons given below. The most acidic hydrogen (**H**) is

Ans. (B)

SECTION 2 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of

which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a

correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -2 In all other cases.

 For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option (i.e. the question is unanswered) will get 0 marks; and

choosing any other combination of options will get -2 marks.

Q.5 Regarding the molecular orbital (MO) energy levels for homonuclear diatomic molecules, the INCORRECT statement(s) is(are)

(A)	Bond order of Ne ₂ is zero.
(B)	The highest occupied molecular orbital (HOMO) of F_2 is σ -type.
(C)	Bond energy of O_2^+ is smaller than the bond energy of O_2 .
(D)	Bond length of Li ₂ is larger than the bond length of B ₂ .

Ans. (B,C)

(i)
$$Ne_2 \Rightarrow (\sigma ls^2)(\sigma^* ls^2)(\sigma 2s^2)(\sigma^* 2s^2)(\sigma 2p_z^2)(\pi 2p_z^2 = \pi 2p_y^2)(\pi^* 2p_z^2 = \pi^* 2p_y^2)(\sigma^* 2p_z^2)$$

B.O. =
$$\frac{6-6}{2}$$
 = 0

(ii)
$$F_2 \Rightarrow (\sigma 1s^2)(\sigma^*1s^2)(\sigma 2s^2)(\sigma^*2s^2)(\sigma 2p_z^2)(\pi 2p_z^2 = \pi 2p_y^2)(\pi^*2p_z^2 = \pi^*2p_y^2)$$

(iii)
$$O_2^{\oplus} \Rightarrow (\sigma l s^2)(\sigma^* l s^2)(\sigma 2 s^2)(\sigma^* 2 s^2)(\sigma^2 p_z^2)(\pi 2 p_z^2 = \pi 2 p_y^2)(\pi^* 2 p_x^1 = \pi^* 2 p_y)$$

B.O. =
$$\frac{6-1}{2}$$
 = 2.5

$$O_2 \Rightarrow (\sigma l s^2)(\sigma^* l s^2)(\sigma 2 s^2)(\sigma^* 2 s^2)(\sigma 2 p_z^2)(\pi 2 p_x^2 = \pi 2 p_y^2)(\pi^* 2 p_x^1 = \pi^* 2 p_y^1)$$

B.O.
$$\frac{6-2}{2} = 2$$
 (Bond order increases, Bond strength increases)

(iv) Size of atom increases, Bond length increases

Size of Li > B

So, Bond length of $Li_2 > B_2$

Q.6 The pair(s) of diamagnetic ions is(are)

(A)	La ³⁺ , Ce ⁴⁺
(B)	Yb ²⁺ , Lu ³⁺
(C)	La ²⁺ , Ce ³⁺
(D)	Yb ³⁺ , Lu ²⁺

Ans. (A,B)

$$La^{+3} \rightarrow [_{54}Xe] \ 4f^0$$
 diamagnetic
 $Yb^{+2} \rightarrow [_{54}Xe] \ 4f^{14}$ diamagnetic
 $Lu^{+3} \rightarrow [_{54}Xe] \ 4f^{14}$ diamagnetic
 $La^{+2} \rightarrow [_{54}Xe] \ 5d^1$ paramagnetic
 $Ce^{+4} \rightarrow [_{54}Xe] \ 4f^0$ diamagnetic
 $Ce^{+3} \rightarrow [_{54}Xe] \ 4f^1$ paramagnetic
 $Yb^{+3} \rightarrow [_{54}Xe] \ 4f^{13}$ paramagnetic
 $Lu^{+2} \rightarrow [_{54}Xe] \ 4f^{14} \ 5d^1$ paramagnetic

For the reaction sequence given below, the correct statement(s) is(are)

(In the options, X is any atom other than carbon and hydrogen, and it is different in P, Q and R)

(A)	C-X bond length in P, Q and R follows the order $Q > R > P$.
(B)	C-X bond enthalpy in P, Q and R follows the order $R > P > Q$.
(C)	Relative reactivity toward S_N2 reaction in P, Q and R follows the order $P > R > Q$.
(D)	pK_a value of the conjugate acids of the leaving groups in P, Q and R follows the order
	R > Q > P.

Ans. (B)

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO
 decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 If ONLY the correct numerical value is entered in the designated place;

Zero Marks: 0 In all other cases.

Q.8 In an electrochemical cell, dichromate ions in aqueous acidic medium are reduced to Cr³⁺. The current (in amperes) that flows through the cell for 48.25 minutes to produce 1 mole of Cr³⁺ is _____.

Use: 1 Faraday = 96500 C mol^{-1}

Ans. (100)

$$nf = 3$$

$$\Rightarrow n_{e^{-}} = 1 \times 3 = \frac{I \times 48.25 \times 60}{96500}$$

$$\Rightarrow I = 100 A$$

Q.9 At 25 °C, the concentration of H⁺ions in 1.00×10^{-3} M aqueous solution of a weak monobasic acid having acid dissociation constant (K_a) of 4.00×10^{-11} is $X \times 10^{-7}$ M. The value of X is _____.

Use: Ionic product of water $(K_w) = 1.00 \times 10^{-14}$ at 25 °C

Ans. (2.24)

$$(H^{\dagger}) = \sqrt{CK_0 + K_W}$$

= $\sqrt{S} \times 10^{-7} = 2.24 \times 10^{-7}$

Molar volume ($V_{\rm m}$) of a van der Waals gas can be calculated by expressing the van der Waals equation as a cubic equation with $V_{\rm m}$ as the variable. The ratio (in mol dm⁻³) of the coefficient of $V_{\rm m}^2$ to the coefficient of $V_{\rm m}$ for a gas having van der Waals constants a = 6.0 dm⁶ atm mol⁻² and b = 0.060 dm³ mol⁻¹ at 300 K and 300 atm is _____.

Use: Universal gas constant (R) = $0.082 \text{ dm}^3 \text{ atm mol}^{-1} \text{ K}^{-1}$

Ans. (-7.1)

Q.11 Considering ideal gas behavior, the expansion work done (in kJ) when 144 g of water is electrolyzed completely under constant pressure at 300 K is _____.

Use: Universal gas constant (R) = $8.3 \text{ J K}^{-1} \text{ mol}^{-1}$; Atomic mass (in amu): H = 1, O = 16

Ans. (29.88)

$$2H_{2}O(12) \rightarrow 2H_{2}(9) + O_{2}(9)$$

 $8 \text{ moles} \qquad 8 \text{ moles} \qquad 4 \text{ moles}$
 $\Delta n_{9} = 12$
 $W = -12 \times 8.3 \times 300$
 $= -2.9880 \text{ J} = -29.88 \text{ kJ}$
 $Ans = 29.88$

Q.12 The monomer (X) involved in the synthesis of Nylon 6,6 gives positive carbylamine test. If 10 moles of X are analyzed using Dumas method, the amount (in grams) of nitrogen gas evolved is

Use: Atomic mass of N (in amu) = 14

Ans. (

(280)

Stylen 6,64000 (
$$^{(H_L)}_4$$
-cooth

My 280 fm Hexa methylene NH_L - $^{(CH_L)}_6$ -NH₂

diamine

NN₂ - $^{(CH_2)}_6$ - NN₂
 $^{(DM)}_2$ $^{(DM)}_2$

Q.13 The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ______.

Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80

Ans. (175)

SECTION 4 (Maximum Marks: 12)

- This section contains THREE (03) Matching List Sets.
- · Each set has ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if the option corresponding to the correct combination is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Q.14 The correct match of the group reagents in List-I for precipitating the metal ion given in List-II from solutions, is

List-I	List-II

- (P) Passing H₂S in the presence of NH₄OH
- (1) Cu^{2+} (2) Al^{3+} (Q) (NH₄)₂CO₃ in the presence of NH₄OH $(3) \text{ Mn}^{2+}$
- (R) NH4OH in the presence of NH4Cl
- (4) Ba²⁺ (S) Passing H₂S in the presence of dilute HCl
 - $(5) \text{ Mg}^{2+}$

(A)	$P \rightarrow 3$; $Q \rightarrow 4$; $R \rightarrow 2$; $S \rightarrow 1$
(B)	$P \rightarrow 4$; $Q \rightarrow 2$; $R \rightarrow 3$; $S \rightarrow 1$
(C)	$P \rightarrow 3$; $Q \rightarrow 4$; $R \rightarrow 1$; $S \rightarrow 5$
(D)	$P \rightarrow 5$; $Q \rightarrow 3$; $R \rightarrow 2$; $S \rightarrow 4$

Ans. (A)

$$Mn^{\scriptscriptstyle +2} \xrightarrow{\quad H_2S + NH_4OH \quad} MnS \downarrow \atop \scriptstyle Pink/buff \ ppt.$$

$$Ba^{+2} \xrightarrow{(NH_4)_2CO_3+NH_4OH} BaCO_3 \downarrow$$
White ppt.

$$Al^{+3} \xrightarrow{NH_4Cl+NH_4OH} Al(OH)_3 \downarrow$$
White ppt.

$$Cu^{+2} \xrightarrow{H_2S+HCl(dil.)} CuS \downarrow$$
Black ppt.

Q.15 The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match each entry in List-I with the appropriate entry in List-II and choose the correct option.


List-I List-II (P) Stephen reaction (1)(i) CrO2Cl2/CS2 (ii) H₃O⁺ Toluene (Q) Sandmeyer reaction (2)(i) PCl₅ (ii) NH₃ (iii) P₄O₁₀, Δ Benzoic acid (R) Hoffmann bromamide degradation reaction (i) Fe, HCl (ii) HCl, NaNO₂ (273-278 K), H₂O Nitrobenzene -(S) Cannizzaro reaction (4)(i) Cl₂/hv, H₂O (ii) Tollen's reagent (iii) SO₂Cl₂ (iv) NH₃ Toluene

(i) (CH₃CO)₂O, Pyridine (ii) HNO₃, H₂SO₄, 288 K Aniline (iii) aq. NaOH

(A)
$$P \rightarrow 2$$
; $Q \rightarrow 4$; $R \rightarrow 1$; $S \rightarrow 3$
(B) $P \rightarrow 2$; $Q \rightarrow 3$; $R \rightarrow 4$; $S \rightarrow 1$
(C) $P \rightarrow 5$; $Q \rightarrow 3$; $R \rightarrow 4$; $S \rightarrow 2$
(D) $P \rightarrow 5$; $Q \rightarrow 4$; $R \rightarrow 2$; $S \rightarrow 1$

(5)

Ans. (B)

Match the compounds in List-I with the appropriate observations in List-II and choose the correct option.

List-I

(P) NH₂ H O OME

List-II

 Reaction with phenyl diazonium salt gives yellow dye.

(Q) NH H O OMe

(2) Reaction with ninhydrin gives purple color and it also reacts with FeCl₃ to give violet color.

(R) NH₃+Cl-

(3) Reaction with glucose will give corresponding hydrazone.

(S) NHNH₂

(4) Lassiagne extract of the compound treated with dilute HCl followed by addition of aqueous FeCl₃ gives blood red color.

(5) After complete hydrolysis, it will give ninhydrin test and it DOES NOT give positive phthalein dye test.

(A)	$P \rightarrow 1$; $Q \rightarrow 5$; $R \rightarrow 4$; $S \rightarrow 2$

(B) $P \rightarrow 2$; $Q \rightarrow 5$; $R \rightarrow 1$; $S \rightarrow 3$

(C) $P \rightarrow 5$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 4$

(D) $P \rightarrow 2$; $Q \rightarrow 1$; $R \rightarrow 5$; $S \rightarrow 3$

Ans. (B

END OF THE QUESTION PAPER