

Chemical Bonding

CHEMICAL BONDING SOLUTIONS

LEVEL – 1

IONIC BOND

- 1. An ionic compound A^+B^- is most likely to be formed when.
 - (1) The ionization energy of A is high and electron affinity of B is low
 - (2) The ionization energy of A is low and electron affinity of B is high
 - (3) Both, the ionization energy of A and electron affinity of B are high
 - (4) Both, the ionization energy of A and electron affinity of B are low

There must be an overall decrease in energy, i.e. energy must be released. For this cation should have low Ionisation potential and anion should have high value of electron-affinity. This is the basic condition for formation of an electrovalent bond

- Which of the following is an ionic compound?
 (1) SO₃
 (2) ICl
 (3) KI
 (4) CHCl₃
 (5) Ki is highly electropositive. Electronic configuration of K is 2, 8, 8, 1 and I is highly electronegative. Therefore they form an electrovalent or ionic bond.
- 3. The compound which does not contain ionic bond is

 NaOH
 HCl
 K₂S
 LiH

 In NaOH, Na is 2, 8, 1 and OH has -1 valency ∴ Na donates 1 electron and OH accepts one electron. This is the case in each option ∴ they form ionic compunds. But in HCl, both H and Cl are sharing electrons.
- 4. The magnitude of the lattice energy of a solid increase if
 - (1) the ions are large (2) the ions are small

(3) the ions are of equal size(4) charges on the ions are smallLattice energy is the amount of energy released when one mole of ionic solid is formed from its gaseous ions. The amount of energy released is due to electrostatic force of attraction.

 $F \propto \frac{q_1 q_2}{r^2}$ where r is the interionic distance and q1, q2 are magnitude of charges.

 \therefore for max lattice energy, r should be minimum r will be small, if size of ion is small.

- 5. Which one of the following statements is incorrect?
 - (1) Sodium hydride is ionic
 - (2) Beryllium chloride is covalent
 - (3) CCl₄ gives a white ppt. with AgNO₃ solution
 - (4) Bonds in NaCl are non-directional
- 6. The compound which contains ionic as well as covalent bonds is
 (1) C₂H₄Cl₂
 (2) CH₃I
 (3) KCN
 (4) H₂O₂
 Ionic bond id formed when electronegativity difference is very large i.e. between 1.7 to 3.2. Hence Ionic bond is formed between K and C and covalent bond is formed between C and N.
- 7. Which of the following is least soluble in H₂O?
 (1) BaF₂
 (2) SrF₂
 (3) CaF₂
 (4) MgF₂
 Water is polar solvent and like dissolves like Be, Mg, Ca, Ba, Br, Ra are elements of group II A, and as we go down a group electronegativity decreases. Hence the least electropositive elements

	are topmost elements ie. Br, Mg is more electropositive than the other option, the bond between MgF_2 is highly polar.
8.	Amongst LiCl, RbCl, BeCl2 and MgCl2, the compounds with the greatest and least ionic character respectively are(1) LiCl and RbCl(2) RbCl and BeCl2(3) RbCl and MgCl2(4) MgCl2 and BeCl2Compare these elements in the periodic table to find Rb is most electropositive and Be is least electropositive. Greatest Ionic character is seen when highly electropositive element reacts with highly electronegative element.
9.	Which of the following is insoluble in water? (1) AgF (2) AgI (3) KBr (4) CaCl ₂ To be Insoluble in water, the solute should be non-polar I is more electropositive than F. \therefore AgI is more non polar than AgF.
10.	Which of the following is least ionic?(1) AgCl(2) KCl(3) BaCl2(4) CaCl2For such questions, refer the periodic table and check electronegativities. To be least ionic the electronegativity difference between the metal and non-metal should be the least.
11.	Which one is the highest melting point?(1) NaCl(2) NaF(3) NaBr(4) NaI.M.P. ∝ Lattice energy
12.	 Which of the following statements about LiCl and NaCl is wrong? (1) LiCl has lower melting point that NaCl (2) LiCl dissolves more in organic solvents whereas NaCl does not (3) LiCl would ionise in water more than NaCl (4) Fused LiCl would be less conducting than fused NaCl LiCl has greater covalent character.
13.	In which of the following species the bonds are non-directional? (1) NCl ₃ (2) RbCl (3) BeCl ₂ (4) BCl ₃ Overlapping does not take place in ionic bond. Rb is a metal present in group I(A) of periodic table.
14.	 The electrovalency of the element is equal to the – (1) number of electrons lost (2) number of electrons gained (3) number of electron transferred (4) number of electrons lost or gained by the atom of the element during the formation of ions of ionic compound The number of electron gained or lost by an atom of an element is known as its electrovalency.
15.	Ionic bond formation involves :(1) Elimination of protons(2) Sharing of electrons(3) Overlapping of orbitals(4) Completion of octetsIn ionic bond formation the atoms lost or gain electrons to complete their octets.
16.	The hydration of ionic compounds involves –(1) Evolution of heat(2) Weaking of attractive forces(3) Dissociation into ions(4) All

2 COLLEGES: ANDHERI / BORIVALI / CHEMBUR / DADAR / KALYAN / KHARGHAR / NERUL / POWAI / THANE

Hydration is an exothermic process.

- 17. Among the following which compounds will show the lowest lattice energy? (1) KF (2) NaF (3) CsF (4) RbF Lattice energy $\propto \frac{1}{\text{size}}$ of the cation.
- 18.The lattice energy of the lithium is in the following order:(1)LiF > LiCl > LiBr > LiI(2)LiCl > LiF > LiBr > LiI(3)LiBr > LiCl > LiF > LiI(4)LiI > LiBr > LiCl > LiFLattice energy $\propto \frac{1}{\text{size}}$ of the cation.
- 19. Among LiCl, $BeCl_2$, BCl_3 and CCl_4 , the covalent bond character follows the order : (1) LiCl < $BeCl_2 > BCl_3 > CCl_4$ (2) LiCl > $BeCl_2 < BCl_3 < CCl_4$ (3) LiCl < $BeCl_2 < BCl_3 < CCl_4$ (4) LiCl > $BeCl_2 > BCl_3 > CCl_4$
- 20. Which one of the following show correct order of covalent character ? (1) ZnO < ZnS (2) ZnS = ZnO (3) ZnS < ZnO (4) None
- 21. Lattice energy (LE) affects on :-
 - (1) Stability of ionic compound
 - (3) Solubility of ionic compound

OCTET RULE AND COVALENT BOND

22. Which of the following compound does not follow octet rule? (1) CO_2 (2) PCl_3 (3) ICl (4) ClF_3

23. In NO_3^- ion, the number of bond pairs and lone pairs of electrons on nitrogen atom are (1) 2, 2 (2) 3, 1 (3) 1, 3 (4) 4, 0

- 24. Which of the following statements concerning a covalent bond is false?
 - (1) The electrons are shared between atoms
 - (2) The bond is non–directional
 - (3) The strength of the bond depends upon the extent of overlapping
 - (4) The bond formed may be polar or non–polar.
- 25. The number of sigma (σ) and pi(π) bonds present in a molecule of tetracyanoethylene

$$(CN)_2 C = C(CN)_2 are$$

(1) 5σ and 9π (2) 5σ and 8π

(3) 9σ and 9π (4) 9σ and 7π

(2) Melting point of ionic compound

(4) All of the above

(1) 5σ and 9π N \equiv C

- C = C'
- In the electronic structure of acetic acid, there are
- (1) 16 shared and 8 unshared electrons
- (3) 12 shared and 12 unshared electrons
- (2) 8 shared and 16 unshared electrons
- (4) 18 shared and 6 unshared electrons

3

26.

- 38. Atomic orbitals of carbon in carbon dioxide are (1) sp – hybridised (2) sp³d – hybridised (3) sp² – hybridised (4) sp³ – hybridised O = C = OSp
- 39. Which one is not tetrahedral? (1) BF_{4}^{-} (2) NH⁺ (4) SO_{4}^{2} (3) CO_3^{2-} 0
- 40. On hybridization of one s and one p – orbitals, we get
 - (1) two mutually perpendicular orbitals
 - (3) four orbitals directed tetrahedrally
 - Sp hybridization gives linear geometry.
- (2) two orbitals at 180° (4) three orbitals in a pl
 - (4) three orbitals in a plane.
- 41. The geometry and the type of hybrid orbitals present about the central atom in BF₃ is
- (2) trigonal planar, sp² (1) linear, sp (4) pyramidal, sp^3 (3) tetrahedral, sp^3 F Sp^2 42. The linear structure is assumed by (1) $SnCl_2$ (2) C_2H_2 (3) NO₂ (4) SO₂ 43. CO₂ is isostructural with (1) HgI_{4}^{-} (2) SnCl₂ (3) NCO⁻ (4) NO_2

.•	
PAC	Ξ

- 51. The geometrical arrangement and shape of I_3^- are respectively
 - (1) Trigonalbipyramidal, T-shape
 - (3) Trigonal planar, Angular

Arrangement is trigonal bipyramidal.

52. Which of the following is octahedral?

(2) Octahedral, linear

(4) SO₂

(4) BF_{4}^{-}

 $NO_2^+ \rightarrow \frac{1}{2}[0+5-1] = 2 = sp$ hybridization No. of lone pairs =0 \therefore shape is linear.

54. A molecule XY₂ contains two σ , two π bonds and one lone pair of electrons in the valence shell of X. The arrangement of lone pair as well as bond pairs is

(3) Trigonal planar (4) Unpredictable (1) Square pyramidal (2) Linear Trigonal planar

55. If the atomic number of M is 50. The shape of gaseous MCl₂ is

56. Select the correct order for the stability of given possible structures of ClF_3

∴ III is least statble

57. In which of the following, bond angle is maximum? (1) NH₃ (2) NH_4^+ (3) PCl₃ (4) SCl₂ Presence of lone pairs on the central atom decreases the bond angles.

DIPOLE MOMENT

- 59. Among the following bonds which has the most polar character? (1) C - O(2) C - Br(3) C - F(4) C - SFor most polar character, we find most electro-negative element from O, Br, F and S E.N. F E.N. 0 S decreases | Br decreases E.N. inc From periodic table \therefore F most electronegative
- 61. Which one of the following arrangement of molecules is correct on the basis of their dipole moments ?
 - (1) $BF_3 > NF_3 > NH_3$ (3) $NH_3 > BF_3 > NF_3$

8

```
(2) NF_3 > BF_3 > NH_3
(4) NH_3 > NF_3 > BF_3
```

In NH₃, the orbital dipole due to lone pair is in the same direction as resultant dipole moment of N – H bonds but in NF₃, the orbital dipole is in the direction opposite to resultant dipole moment of the 3 N – F bonds

62. Arrange the following compounds in order of increasing dipole moment. Toluene (I), m – dichlorobenzene (II), o – dichlorobenzene (III), p – dichlorobenzene (IV). (1) I < IV < II < III (2) IV < I < II < III (3) IV < I < III < II (4) IV < II < III Dipole moment increases with decrease in bond angles.

P A	Chemical E	Bonding	Ch. XI
63.	Which one of the following has zero dipole m (1) ClF (2) PCl ₃ SiF ₄ has symmetrical structure	oment ? (3) SiF ₄	(4) CFCl ₃
64.	Which of the following compounds is non–po (1) CH ₃ Cl (2) CH ₂ Cl ₂ CCl ₄ has a symmetrical structure.	olar? (3) CHCl ₃	(4) CCl ₄
65.	Which of the following molecules has highest (1) H ₂ S (2) CO ₂	dipole moment? (3) CCl ₄	(4) BF ₃
МОТ			
66.	Which of the following diatomic molecules w (1) C_2 (2) CN Bond order of $O_2^+ > O_2$	ould be stabilized by th (3) N ₂	he removal of an electron (4) O ₂
67.	When N ₂ forms N ₂ ⁺ , the N—N bond distance distance (1) increases, decreases (3) increase in both case Bond order $\propto \frac{1}{bond length}$	(2) (4) decrease in bo	decreases, increases

68. Which graph best represent the energy diagram of molecular orbitals V/S distance between atoms

- 69. Which of the following statements is incorrect?
 - (1) He₂ does not exist because its bond order is zero
 - (2) O_2, O_2^- and O_2^+ are all paramagnetic

(3) any two atomic orbitals can combine to form two molecular orbitals

(4) $\pi(2p_x)$ and $\pi(2p_y)$ are degenerate molecular orbitals

For linear combination of atomic orbitals the combining orbitals should have comparable energies.

Chemical Bonding

70.	The bond order in peroxide ion (O_2^{2-}) is				
	(1) 2.5	(2) 1.5	(3) 2	<mark>(4) 1.0</mark>	
	$B.O = \frac{N_b = N_a}{2}$				

- 71. The energy of σ_{2s} is greater than σ_{1s} orbital because
 - (1) σ_{2s} –orbital is bigger than σ_{1s} –orbital
 - (2) σ_{2s} is a bonding orbital whereas σ_{1s} is an antibonding orbital
 - (3) σ_{2s} –orbital has a greater value of *n* than σ_{1s} –orbital
 - (4) σ_{2s} -orbital is formed only after σ_{1s} Energy of an orbitals $\propto n$
- 72. The sequence of energy levels of MO's formed from the outermost shells of C₂ molecule is (1) $\sigma(2s) < \sigma^{*}(2s) < \pi(2p_{x}) = \pi(2p_{y}) < \sigma(2p_{z}) < \pi^{*}(2p_{x}) = \pi^{*}(2p_{y}) < \sigma^{*}(2p_{z})$ (2) $\sigma(2s) < \sigma^{*}(2s) < \pi(2p_{x}) = \pi(2p_{y}) < \sigma(2p_{z}) < \sigma^{*}(2p_{z}) < \pi^{*}(2p_{y}) = \pi^{*}(2p_{z})$ (3) $\sigma(2s) < \sigma^{*}(2s) < \pi(2p_{z}) = \pi(2p_{y}) < \pi^{*}(2p_{x}) = \pi^{*}(2p_{y}) < \sigma^{*}(2p_{z})$ (4) $\sigma(2s) < \sigma^{*}(2s) < \sigma(2p_{z}) < \pi(2p_{x}) = \pi(2p_{y}) < \sigma^{*}(2p_{z}) < \pi^{*}(2p_{x}) = \pi^{*}(2p_{y})$
 - The total no. of electron in C_2 molecule is < 14.
- 73. How many bonds (bond order) does B_2 have? (1) 0 (2) 1 (3) 2 (4) 3 In B_2 molecule $B.O = \frac{6-4}{2} = 1$

74. Which among the following molecules/ions is diamagnetic?
(1) Super oxide ion
(2) Oxygen
(3) Carbon molecule
(4) Unipositive ion of N₂ molecule
There are no unpaired electrons in C²

- 75. Which of the following contains maximum number of electrons in the antibonding molecular orbitals?
 - (1) O_2 (2) O_2^{2-} (3) O_2^{-} (4) O_2^{+}

 O_2^{2-} has 4 electron in the π^* molecular orbitals

- 76. Which of the following molecules have unpaired electrons in antibonding molecular orbitals? (1) O_2 (2) N_2 (3) C_2 (4) B_2 O_2 is paramagnetic.
- 77. In which set of molecules are all the species paramagnetic? (1) B_2 , O_2 , N_2 (2) B_2 , O_2 , NO (3) B_2 , F_2 , O_2 (4) B_2 , O_2 , Li_2 B_2 , O_2 and NO have unpaired electrons

HYDROGEN BOND & COORDINATE BOND

10

78.Hydrogen bonding is absent in
(1) H2O
(2) NH3
(3) C2H5OH(4) C2H5OC2H5In order to form H-bonds the H atom has to be bonded to O, N or F

PAC	CE Chemical Bo	onding	Ch. XI
79.	What is the maximum number of hydrogen bor (1) 1 (2) 2	nds in which a water mo (3) 3	lecule can participate (4) 4
80.	Which of the following hydrogen halides is mo (1) HF (2) HCl H – F has intermolecular H- Bonding.	ost volatile? (3) HBr	(4) HI
81.	 Amongst H₂O, H₂S, H₂Se and H₂Te, the one v (1) H₂O because of hydrogen bonding (3) H₂S because of hydrogen bonding Intermolecular H-bonding increases the boiling 	 (2) H₂Te because of (4) H₂Se because of 	ooint is higher molecular weight lower molecular weight
82.	The boiling point is not affected due to hydrog (1) Water (2) ammonia No H-bonding present in HCl molecules	en bonding in (3) methyl alcohol	(4) hydrogen chloride
83.	Intramolecular H-bonding is present in (1) o-Nitrophenol (2) Salicylaldehyde $ \begin{array}{c} $	(3) m–Nitrophenol	(4) both (1) and (2)
84.	Which of the following compounds has the molecules? (1) NH ₃ (2) NH ₂ OH In order to form H-bonds the H atom has to be	(3) HF	rm hydrogen bonds between (4) CH ₃ F
85.	Incorrect order of decreasing boiling points is (1) $HF > HI > HBr > HCl$ H_2S (3) $Br_2 > Cl_2 > F_2$ Boiling point increase with increase in molecul	(2) (4) CH ₄ > GeH ₄ > Sil	$H_2O > H_2Te > H_2Se >$
86.	Which of the following has highest viscosity? (1) Glycerol (2) Glycol Duet o extensive intermolecular H-bonding	(3) Ethanol	(4) Water
MISC	CELLANEOUS		
33.	If Z-axis is the molecular axis, then π -molecu (1) $s + p_z$ (2) $p_x + p_y$ π -bonds are perpendicular to σ -bonds	alar orbitals are formed b (3) $p_z + p_z$	by the overlap of (4) $p_x + p_x$

34. Which of the following combinations is not allowed (assumed Z-axis is internuclear axis)? (1) 2s and 2s (2) $2p_x$ and $2p_x$ (3) 2s and $2p_z$ (4) $2p_x$ and $2p_y$ For effective overlap the orbitals should lie in a common plane.

Chemical Bonding

		Chemi	cai Bonding	Ch. XI
36.	al atom with			
	sp ² hybridization is (1) H ₂ CO ₃ O	(2) SiF ₄	(3) BF ₃	(4) $HClO_2$
	0 H-O-C-O-H			
	sp ²			
48.	(1) A $_{\sigma}$ bond is weak (2) There are four co	ng statements is correct ker than a π bond bordinate bonds in the nd is directional in national the statement of the state	NH_{4}^{+} ion	
	(4) HF is less polar			
87.	Which of the following (1) H ₃ O ⁺	ng does not contain an (2) BF_{4}	y coordinate bond? (3) HF ₂	(4) NH_4^+
	HF ₂ has H-bonding.	`´´ 4		, ,
88.	Which of the following NO_3^- , SO_3^{-2} , SO_3 , CO_3^{-2} , SO_3^{-2} ,	ng are isoelectonic and D_{2}^{-}	l isostructural?	
		(2) SO_3 , NO_3^-	(3) $\text{ClO}_{3}^{-}, \text{CO}_{3}^{2-}$	(4) CO_3^{2-} , SO ₃
89.		O—O bond length in O (2) $O_3 > H_2O_2 > O_2$		(4) $O_2 > H_2 O_2 > O_3$
90.	C		length of CO, CO_3^{2-} , CO ₂ is	
20.			$\begin{array}{c} \text{O} (3) \text{CO} < \text{CO}_3^2 < \text{CO}_2 \\ \end{array}$	(4) $CO < CO_2 < CO_3^{2-}$
	Bonding length	$\propto \frac{1}{\text{Bond order}}$		
		IE	VEL – 2	
		LE		

IONIC BOND

- 1. Which one is the correct statement with reference to solubility of MgSO₄ in water : (1) Hydration energy of MgSO₄ is higher in comparison to its lattice energy

 - (2) Ionic potential of Mg²⁺ is very low
 (3) SO₄²⁻ ion mainly contributes towards hydration energy
 - (4) Size of Mg^{2+} and SO_4^{2-} are similar
 - Solubility increases with increase in hydration energy.
- 2. Condition for ionic bond formation is/are :
 - (a) Small cation, large anion
 - (b) Low IP of cation, high electron affinity
 - (c) Large cation, small anion and less charge
 - COLLEGES: ANDHERI / BORIVALI / CHEMBUR / DADAR / KALYAN / KHARGHAR / NERUL / POWAI / THANE 12

PACE		Chemical Bonding			Ch. XI
	(d) Less lattice energy Correct answer is: (1) a, d I.P $\propto \frac{1}{\text{size of cation}}$ E.A $\propto \frac{1}{\text{size of antion}}$	(2) b, c and d	(3) b and c	(4)	a, b
3.	(1) Dipole – dipole(3) Ion – ion force		compound in water is – (2) Ion – dipole forc (4) Hydrogen bond h polarity of H ₂ O molecu		
4.		mainly used to determine(2) Electron affinity		y (4)	Electronegativity
5.	Highest melting poin (1) AlCl ₃ M.P $\propto \frac{1}{\text{cov alent char}}$	(2) LiCl	(3) NaCl	(4)	BeCl ₂
6.		lent compounds electrov igh b.p. gh b.p.	alent compounds general (2) Low m.p. and lo (4) high m.p. and lo	w b.p.	55
7.	The electronic config (1) MO The metal M has a va	$(2) M_2O$	$^{2} 2s^{2} 2p^{6} 3s^{1}$. The formula (3) M ₂ O ₃		kide will be: MO ₂
8.	(1) diamond(3) sodium chloride	ng does not show electric (fused) etrons in the structure of	(2) graphite(4) potassium		
9.	The most covalent ha (1) AlF ₃ Covalent character in	lide is :- (2) AlCl ₃ acreases with increase in	(3) AlBr ₃ size of the anion.	<mark>(4)</mark>	All ₃
10.	 (1) Lattice energy o (2) Ionisation poten (3) Li⁺ has more hyperbolic 	anic solvent while NaCl f NaCl is less than that of tial of Li is more than tha dration energy that Na ⁺ ic valent compound than tha	f LiCl at of Na on		
12.	(1) $BeCl_2 < MgCl_2 < (3) BeCl_2 > MgCl_2 > Mg$	The sector of alkaline $< CaCl_2 < SrCl_2 > CaCl_2 > SrCl_2 > CaCl_2 > SrCl_2 eater will be the polariza$	(2) $BeCl_2 < CaCl_2 < (4) SrCl_2 > BeCl_2 >$		0

Smaller the cation greater will be the polarization

PA	Chemical B	onding		Ch. XI
13.	Which of the compound is least soluble in wat (1) AgF (2) AgCl AgI has maximum covalent character	er (3) Ag	gBr	(4) AgI
14.	 CCl₄ is more covalent than LiCl because : (1) There is more polarization of Cl in CCl₄ (3) CCl₄ has more weight Carbon is more electronegative than Li 	. ,	nere is more polarized	zation of Cl in LiCl
15.	The correct order of decreasing polarizable ior (1) Cl ⁻ , Br ⁻ , I ⁻ , F ⁻ (2) F ⁻ , I ⁻ , Br ⁻ , Cl ⁻ Larger anion are readily polarized		, Cl⁻, Br⁻, I⁻	(4) I [–] , Br [–] , Cl [–] , F [–]
16.	Ionic conductances of hydrated M^+ ions are in (1) $Li^+(aq) > Na^+(aq) > K^+(aq) > Rb^+(aq) > C$ (2) $Li^+(aq) > Na^+(aq) < K^+(aq) < Rb^+(aq) < C$ (3) $Li^+(aq) > Na^+(aq) > K^+(aq) > Rb^+(aq) < C$ (4) $Li^+(aq) < Na^+(aq) < K^+(aq) < Rb^+(aq) < C$ Smaller cations are more heavily hydrated	Cs ⁺ (aq) Cs ⁺ (aq) Cs ⁺ (aq)	_	
22.	Correct order of melting point is ? (1) $SnCl_2 > SnCl_4$ (2) $SnCl_4 > SnCl_2$ $SnCl_4$ is more covalent than $SnCl_2$ (fajan's rule	. ,	$Cl_2 = SnCl_4$	(4) None of these
23.	Which of the following suffers a weight loss of (1) Li_2CO_3 (2) Washing soda $\text{Li}_2\text{CO}_3 \xrightarrow{\Delta} \text{Li}_2\text{O} + \text{CO}_2 \uparrow$ $\text{Na}_2\text{CO}_3.10\text{H}_2\text{O} \xrightarrow{\Delta} \text{Na}_2\text{CO}_3 + 10\text{H}_2\text{O} \uparrow$			(4) None
24.	On heating Na ₂ CO ₃ gives :- (1) Na ₂ O + CO ₂ (2) Na ₂ + CO ₃ Na ₂ CO ₃ is stable to heat	(3) Na	$a + CO_2$	(4) None
25.	 Correct order of melting point is :- (1) NaF < MgF₂ < AlF₃ (3) MgF₂ < NaF < AlF₃ Melting point of ionic solids is directly proportion 	(4) No		5.
OCT	ET RULE			
27.	Which among the following shows the limitation (1) CH ₄ (2) NO In NO molecule there is an incomplete octet of	(3) CC	O_2	(4) NH4 ⁺
28.	Which of the following is an example of expan (1) SF ₆ (2) PF ₅ S and P have an expanded octet in the given co	(3) H ₂		(4) All of these

E

COVALENT BOND

29. The strength of bonds by 2s - 2s, 2p - 2p and 2p - 2s overlapping has the order :-(1) s - s > p - p > s - p (2) s - s > p - s > p - p(3) p - p > s - p > s - s (4) p - p > s - s > p - sp = arbitals have directional character and have overlap more efficiently.

p-orbitals have directional character and hence overlap more efficiently.

30. In which of the excitation state of chlorine ClF₃ is formed :(1) In ground state
(2) In third excitation state
(3) In first excitation state
(4) In second excitation state

Chlorine will have 3 unpaired electron in its 1st excited state and hence can form 3 bonds.

- 31. A sigma bond is formed by the overlapping of :-
 - (1) s-s orbital alone
 - (2) s and p orbitals alone

(3) s-s, s-p or p-p orbitals along intermuclear axis

- (4) p-p orbital along the sides
- σ -bonds are formed along the internuclear axis.
- 32. Which overlapping is involved in HCl molecule :-(1) s-s overlap (2) p-p overlap (3) s-d overlap (HCl molecule involves s-p overlap of atomic orbitals.
 - (4) s-p overlap

- 33. Which is not characteristic of π bond :-
 - (1) π -bond is formed when a sigma bond already formed
 - (2) π bond are formed from hybrid orbitals
 - (3) π -bond may be formed by the overlapping of p-orbitals
 - (4) π -bond result from lateral overlap of atomic orbitals

Hybrid orbitals can form only sigma bonds.

- 34. π bond is formed :-
 - (1) By overlapping of hybridized orbitals
 - (2) Overlapping of s s orbitals
 - (3) Head on overlapping of p p orbitals
 - (4) By p p lateral overlapping

Lateral overlapping of p orbitals gives rise to π – bonds.

- 35. p-p overlapping will be observed in the molecules of:
 (1) Hydrogen (2) Hydrogen bromide (3) Hydrogen chloride (4) Chlorine In Cl₂ molecule the Cl atoms use their outer most p-orbitals for bonding.
- 36. Which compound of xenon is not possible (1) XeF_2 (2) XeF_4 (3) XeF_5 (4) XeF_6 The excited states of Xe atoms can result in the formation of 2, 4, 6 and 8 covalent bonds by Xe.
- 37. Higher is the bond order, greater is –
 (1) Bond dissociation energy
 (3) Bond length
 - B.D.E \propto Bond order

- (2) Covalent character
- (4) Paramagnetism

- 38. Which condition is not favourable for the combination of atomic orbitals:-
 - (1) The combining atomic orbitals nearly have the same energy
 - (2) The combining atomic orbitals must have the same symmetry about the molecular axis
 - (3) The combining orbitals must overlap to the maximum extent
 - (4) The combining orbitals must overlap to the minimum extent

The combining orbitals should have maximum overlap of the orbitals

HYBRIDISATION

39.	 In the protonation of H₂O, change occurs in (1) Hybridisation state of oxygen (3) Hybridisation and shape both 	(2) Shape of molecule(4) None	
	$\begin{array}{ccc} H_2O & \xrightarrow{H^+} & H_3O^+ \\ V-\text{shape} & & \text{trigonal pyramidal shape} \end{array}$		
40.	In the compound ${}^{1}CH_{2} = {}^{2}CH - {}^{3}CH_{2} - {}^{4}CH_{2} - {}^{5}C \equiv {}^{6}CH$, the C ² - C ²	bond is formed by the ove	rlapping of :-
	(1) $sp - sp^2$ (2) $sp^3 - sp^3$ No. of σ -bonds formed by C atoms is equal to		(4) sp ² – sp ³ als used.
41.	Which of the following elements can not exhibit	sp ³ d hybridization state:-	
	(a) C (b) P Correct answer is :-		(d) B
	(1) a, c (2) a, d C and B do not have a d-orbitals.	(3) b, c	(4) b, d
42.	Which of the following species are expected to	be planar :-	
	(a) NH_3 (b) NH_2^{\oplus}	-	(d) PCl ₃
	The correct answer is :-		
	(1) b and c (2) c and d	(3) b and d	(4) a and d
	Both NH_2^+ and $\stackrel{+}{C}H_3$ have trigonal planar geom	etry.	
43.	In which following set of compound/ion has line	ear shaped	
	(1) CH_4 , NH_4^+ , BH_4^- (2) CO_3^{-2} , NO_3^- , BF_3	$(3) NO_2^+, CO_2, XeF_2$	(4) $\operatorname{BeCl}_2, \operatorname{BCl}_3, \operatorname{CH}_4$
	0=C=0 F-	∨∨ —Xe—F	
	0 <u> </u>	\wedge	
	Sp Sp	(\cdot)	
		Sp ³ d	
44.	Which of the following set is not correct :-		
	(1) SO ₃ , O ₃ , NH_4^+ all have coordinate bonds		l are V shape molecules
	(3) I_3^- , ICl_2^- , NO_2^+ ; all are linear molecules	(4) SF_4 , SiF_4 , XeF_4 are te	trahedral in shape

16

SF₄: See-saw shape SiF₄ : Tetrahedral XeF₄: square planar PACE

- **Chemical Bonding** Ch. XI When p-character of hybridized orbital (formed by s and p orbitals) increases. Then the bond angle 52. (3) Becomes twice (1) Decreases (2) Increases (4) Remains unaltered $Sp: 180^{\circ}$ Sp²:120⁰ Sp³: 109⁰28' 53. Which orbitals overlap to form bond in OF₂ (1) $sp^3 - 2p$ (2) $sp^2 - 2p$ (3) sp - 2p(4) p - pp=orbtial Among the following orbital/bonds, the angle is minimum between : 54. (1) sp^3 bonds (2) p_x and p_y orbitals (3) H–O–H bond in water (4) sp bonds $P_x - P_y$ bond angle = 90^0 55. The AsF₅ molecule is trigonal bipyramidal. The hydrid orbitals used by the As atoms for bonding are (1) $d_{x^2-y^2}, d_{z^2}, p_x, p_y$ (2) d_{xy}, s, p_x, p_y, p_z (3) $s, p_x, p_y, p_z, d_{z^2}$ (4) $d_{x^2-y^2}, s, p_x, p_y$ In the geometry the orbitals used are S, Px, Py, Pz, dx^2 When the hybridization state of carbon atom changes from sp^3 , sp^2 and sp, the angle between the 56. hybridized orbitals. (2) increase progressively (1) decrease considerably (3) decrease gradually (4) all of these
 - Sp³: 109⁰28'
 - Sp²: 120⁰
 - $Sp: 180^{\circ}$

The hybridization states of the central atoms of the ions I_3^- , ICl_4^- and ICl_2^- are respectively :

- 58. Molecular shapes of SF₄, CF₄ and XeF₄ are :-
 - (1) The same, with 2, 0 and 1 lone pairs of electrons respectively
 - (2) The same, with 1, 1 and 1 lone pairs of electrons respectively
 - (3) Different, with 0, 1 and 2 lone pairs of electrons respectively
 - (4) Different, with 1, 0 and 2 lone pairs of electrons respectively

- 59. Which of the following two are isostructural :-(3) CO_3^{2-}, SO_3^{2-} (4) PCl_5, ICl_5 (1) XeF_2, IF_2^- (2) NH_3, BF_3 Isostructural are also isoelectronic
- 60. Select the correct matching :

Which one of the following pair is a correct with respect to molecular formula of xenon compound 61. and hybridization state of xenon in it :

(1) XeF_4 , sp^3	(2) XeF_2 , sp	(3) XeF ₂ , sp ³ d	(4) XeF ₄ , sp^2
$XeF_4:sp^3d^2$			
$XeF_2:sp^3d$			
The molecule does	not have bent shape :-		

(3) H₂O

 NH_4^+

(4)

(1) SO₂ Η Ή Η Η tetrahedral shape

(2) O_3

63. Which among the given choice does not have the same hybridization and geometry of (PCl₆)⁻? (4) $\left[Al(H_2O)_6 \right]^{3+}$ (1) $(SiF_6)^{2-}$ (3) SF_{6} XeF₆

62.

- (1) The number of hybrid orbitals are equal to the number of the atomic orbitals that get hybridized
- (2) The hybrid orbital are always equivalent in energy and shape
- (3) The hybrid orbitals are more effective in forming stable bonds than the pure atomic orbitals
- (4) Overlapping and hybridization are same phenomenon

Hybridisation process involves the mixing of orbitals of the same atom.

65. The percent s-character in CH_4 is :-(1) 100% (2) 45% (3) 75% (4) 25% CH_4 sp³ dybridisation (4)

DIPOLE MOMENT

64.

- 66. Which statement is correct :-
 - (1) All the compounds having polar bonds, have dipole moment
 - (2) SO_2 is non-polar
 - (3) H₂O molecule is non polar, having polar bonds
 - (4) PH₃ is polar molecule having non polar bonds

$$H H H H_{\mu \neq 0}$$

- 67. BeF₂ has zero dipole moment where as H_2O has a dipole moment because :-
 - (1) Water is linear

- (3) F is more electronegative that O
- (2) H_2O is bent
- (4) Hydrogen bonding is present in H_2O
- F-Be-F H H $\mu = 0$ $\mu = 0$ 68. Which of the following molecule have zero dipole moment :-(1) BF₃ (2) CH₂Cl₂ (3) NF₃ (4) SO₂ F J F F F Sp² symmetrical molecule

- 74. PCl₅ is non polar because :-
 - (1) P Cl bond is non-polar
 - (3) P Cl bond is polar

$$q - \frac{1}{p} < q$$

(2) Its dipole moment is zero

(4) P and Cl have equal electronegativity

tbp geometry (symmetrical molecule)

- 75. Dipole moment of CO_2 is zero which implies that:
 - (1) Carbon and oxygen have equal electronegativities
 - (2) Carbon has no polar bond
 - (3) CO_2 is a linear molecule
 - (4) Carbon has bond moments of zero value
 - O = C = O linear geometry
- 76. The correct order of dipole moment is :

(1) $CH_4 < NF_3 < NH_3 < H_2O$ (3) $NH_3 < NF_3 < CH_4 < H_2O$ (2) $NF_3 < CH_4 < NH_3 < H_2O$ (4) $H_2O < NH_3 < NF_3 < CH_4$

Dipole moment of CH₄=0

H₂O has the highest dipole moment due to max. electronegativity difference and minimum bond angle.

77.	Which of the following (1) HCl	g has the highest value of (2) HF	dipole moment : (3) HI	(4) HBr
78.	 Which compounds has (A) BF₃ (E) XeF₂ (1) A & B 	s permanent dipole moment (B) SiF ₄ (F) CHCl ₃ (2) C & D	nt : (C) SF ₄ (3) D, E & F	(D) XeF ₄ (4) C & F
79.	(1) CH ₄ CH ₄ and CCl ₄ $\mu = 0$ CHCl ₃ >CHI ₃	argest dipole moment : (2) CHCl ₃ ce in electronegativity.	(3) CCl ₄	(4) CHI ₃
80.	Which of the following			
81.	(1) CCl ₄ The molecule does not	(2) CHCl ₃ t have zero dipole momen	(3) CH_2Cl_2	(4) CH ₃ Cl
01.	(1) CO_2	(2) CCl ₄	(3) BF_3	(4) HCl
82.	Which of the following (1) Water	g compound possess dipo (2) Boron trifluoride	le moment :- (3) Benzene	(4) Carbon tetra chloride
MOL	ECULAR ORBITAL	THEORY		
83.	The ion that is isoelect (1) CN ⁻	tronic with CO and having (2) O_2^+	g same bond order is :- (3) O_2^-	(4) N ₂ ⁺

COLLEGES: ANDHERI / BORIVALI / CHEMBUR / DADAR / KALYAN / KHARGHAR / NERUL / POWAI / THANE

DACE Ch. XI **Chemical Bonding** Both CO and CN⁻ have the same bond order as they are isoelectronic 84. Which of the following is paramagnetic :-(1) O_2^- (2) CN^{-} (3) CO (4) NO^+ O_2 has one unpaired electron in its π^* orbital 85. In the following which of the two are paramagnetic (a) N_2 (b) CO (c) B_2 (d) NO_2 Correct answer is : (3) c and d (4) b and d (1) a and c (2) b and c B₂ and NO₂ are paramagnetic due to presence of unpaired electrons in their molecular orbitals 86. The bond order of CO molecular on the basis of molecular orbital theory is (1) Zero (2) 2(3) 3 (4) 1 B.O of CO = 3 $N_b = 10 \ N_a = 4$ B.O = $\frac{10-4}{2} = 3$ 87. Which of the following species will have the minimum bond energy (1) N_2 (2) N_2^- (3) N_2^+ (4) N_2^{-2} Higher the B.O. higher is the bond energy. 88. Which of the following ion do not have bond order of 2.5? (2) O_2^+ (3) N_2^+ (1) O_2^- (4) N_2^{-} O_2^- has a bond order of 1.5 The electron adds to which one of the following orbitals during change of N_2 to N_2^- . 89. (3) π^* orbital (2) σ^* orbital (1) σ orbital (4) π orbital The electron adds to a π * molecular orbital 90. In which of the following species removal of electron exhibit a decrease in paramagnetic behavior? (1) F_2 (3) C₂ (2) N_2 $(4) B_2$ B₂ molecule has 2 unpaired electrons . 91. Pick the wrong statement w.r.t. molecular orbital theory (MOT). (1) Participation of orbital of comparable energies takes place. (2) The electron is under the influence of two or more than two nuclei. (3) The molecular orbital formed is equal to the number of atomic orbitals combined (4) The probability of electron distribution in a molecule is given by atomic orbitals only. Molecular orbitals are formed by the LCAO method. 92. Which among the following species is does not exist? (2) H_2^+ (1) He_2^+ (3) H_2^- (4) Be₂ Bond order in $Be_2 = O$ 93. The given species not having the same bond order as of other three :-94. (2) H_2^+ (1) He_2^+ (3) H_2^- (4) Li_2 He_{2}^{+}, H_{2}^{+} and H_{2}^{-} has a B.O = 0.5

PAC	E Chemical	Bonding	Ch. XI
95.	The minimum bond length will be observed in (1) O_2 (2) O_2^- Bond length $\propto \frac{1}{Bond order}$	n :- (3) O ₂ ⁺	(4) O_2^{2-}
96.	Which among the given pair of molecules control (1) B ₂ and F ₂ (2) B ₂ and C ₂ ²⁺ Both B ₂ + C ₂ ²⁺ consists of pi bonds only.	nsists only of $Pi(\pi)$ bonds? (3) N ₂ and O ₂	(4) C_2 and N_2
99.	Which molecule does not exist : (1) He ₂ (2) O ₂ Bond order of He ₂ = O	(3) N ₂	(4) B ₂
100.	Which is correct electronic configuration for (1) $KK(\sigma 2S)^2(\sigma^* 2s)^2(\pi 2Px^2 = \pi 2Py^2)$ (3) $KK(\sigma^* 2s^2)(\sigma 2s)^2(\pi 2Px^2 = \pi 2Py^2)$ C ₂ molecule consists of 12 electrons	(2) $KK(\sigma 2s^2)(\sigma^* 2s)$	$^{2}\left(\pi 2Px^{1}=\pi 2Py^{1}\right)\sigma 2Pz^{2}$
101.	The molecule/species having highest bond or (1) O_2 (2) O_2^- B.O \propto no. of electrons in BMO's	der :- $(3) O_2^+$	(4) O_2^{-2}
102.	The calculated bond order in H_2^- ion is :- (1) 0 (2) $\frac{1}{2}$ $H_2^- B.O = 0.5$	(3) $-\frac{1}{2}$	(4) 1
103.	 O₂ molecule is paramagnetic due to :- (1) It contains 2 unpaired electrons in π[*]2Px (2) It contains no unpaired electrons in π[*]2F (3) It contains 2 paired electrons in σ2s orbit (4) It contains 1 unpaired electrons in σ2s orbit There are 2 unpaired electrons in the π[*] Mole 	Px and π^* 2Py molecular orb tal rbital	
104.	Which is not correct according to M.O.T.(1) $Nb > Na$ Positive bond order(2) $Nb < Na$ Negative bond order(3) $Nb = Na$ Zero bond order(4) $Nb > Na$ Negative bond orderWhen $N_b > N_a$ then B.O. will be +ve		
105.	The molecule having bond order 3 is :- (1) H_2 (2) N_2 N_2 has a bond order of 3	(3) O ₂	(4) He_{2}^{+}
106.	Which is correct electronic configuration for (1) $\sigma ls^2 \sigma^* ls^2 \sigma 2s^2 \sigma^* 2s^2 \pi 2p_x^2 \pi 2p_y^2 \sigma 2p_x^2$		lecule :-

24 COLLEGES: ANDHERI / BORIVALI / CHEMBUR / DADAR / KALYAN / KHARGHAR / NERUL / POWAI / THANE

	(2) $\sigma ls^2 \sigma^* ls^2 \sigma 2s^2 \sigma^* 2s^2 \sigma 2p_x^2 \pi 2p_y^2 \pi 2p_z^1$ (3) $\sigma ls^2 \sigma^* ls^2 \sigma 2s^2 \sigma^* 2s^2 \sigma 2p_z^2 \pi 2p_x^2 \pi 2p_y^1$ (4) $\sigma ls^2 \sigma^* ls^2 \sigma 2s^2 \sigma^* 2s^2 \sigma 2p_z^2 \pi 2p_x^2 \pi 2p_z^1$ N_2^+ is a 13 electron system				
107.	Two nodal planes are present in :- (1) $\pi^* 2p_x$ (2) $\sigma 2p_z$	(3)	$\pi 2p_x$	(4)	$\pi 2p_y$
108.	Which is the most stable :- (1) N_2 (2) N_2^+ B.O \propto statbility	(3)	N_2^-	(4)	N_2^{-2}
109.	Which set of molecules having same sequence of (1) B_2,O_2,N_2 (2) O_2, Be_2, F_2 B_2, C_2, N_2 have 14 or <14 electrons		rgy levels. B ₂ , C ₂ , N ₂	(4)	N ₂ , O ₂ , B ₂
COO	RDINATE BOND				
110.	 In Co-ordinate bond, the acceptor atoms must es (1) With paired electron (3) With no electron The acceptor atom should accept the electron pair 	(2) (4)	With single electro With three electron	n I	v shell an orbital:-
111.	 The bonds present in N₂O₅ are :- (1) Only ionic (3) Only covalent 		Covalent and coord Covalent and ionic	linate	2
112.	Dative bond is present in (1) SO ₃ (2) NH ₃	(3)	K ₂ CO ₃	(4)	BF ₃
113.	The compound containing co-ordinate bond is : (1) H_2SO_4 (2) O_3	(3)	SO ₃	<mark>(4)</mark>	All of these
WEA	K FORCES				
114.	Intermolecular hydrogen bonds are not present in (1) CH ₃ CH ₂ OH (2) CH ₃ COOH In order to from H-bonds the H-atom should be	(3)	$C_2H_5NH_2$ ctly bonded to O, N,	× /	CH ₃ OCH ₃
115.	In which of the following molecule, the shown h	ydro	gen bond is not poss	ible :	

- 122. Density of ice is less than that of water because of
 - (1) presence hydrogen bonding
 - (2) crystal modification of ice
 - (3) open porous structure of ice due to hydrogen bonding
 - 26 COLLEGES: ANDHERI / BORIVALI / CHEMBUR / DADAR / KALYAN / KHARGHAR / NERUL / POWAI / THANE

PAC	Chemical Bonding	Ch. XI
	(4) different physical states of theseThe porous structure in ice decreases the density.	
123.	NH ₃ has abnormally high boiling point because it has : (1) Alkaline nature (2) Distorted shape (3) sp ³ – Hybridisation (4) Hydro H-bonding in NH ₃ increases its boiling point?	ogen bonding
124.	Which of the following is soluble in water ? (1) CS_2 (2) C_2H_5OH (3) CCl_4 (4) CHCl Due to H-bonding	13
125.	KF combines with HF to form KHF ₂ . The compound contains the species : (1) K^+, F^- and H^+ (2) K^+, F^- and HF (3) K^+ and $[HF_2]^-$ (4) [KHF $K^+F^-, \dots, H-F$	$\left[\frac{1}{2}\right]^+$ and F_2

ASSERTION & REASON

Read the assertion and reason carefully to mark the correct option out of the options given below :

- If both assertion and reason are true and the reason is the correct explanation of the assertion. (a) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (b)
- If assertion is true but reason is false. (c)
- If the assertion and reason both are false. (d)
- (e) If assertion is false but reason is true.
- Assertion : Water is a good solvent for ionic compounds but poor one for covalent compounds. 1.
 - Reason Hydration energy of ions releases sufficient energy to overcome lattice energy and : break hydrogen bonds in water, while covalent bonded compounds interact so weakly that even Vander Waal's forces between molecules of covalent compounds cannot be broken.

(a)

(a)

(a)

3.

- 2. Assertion : The atoms in a covalent molecule are said to share electrons, yet some covalent molecules are polar.
 - Reason In a polar covalent molecule, the shared electrons spend more time on the average : near one of the atoms?
 - **Assertion :** Diborane is electron deficient
- Reason There are no enough valence electrons to form the expected number of covalent ٠ bonds
- **Assertion :** A resonance hybrid is always more stable than any of its canonical structures 4. This stability is due to delocalization of electrons Reason :
- (a) All F - S - F angle in SF_4 greater than 90° but less than 180° 5. **Assertion :**
 - The lone pair-bond pair repulsion is weaker than bond pair-bond pair repulsion. Reason :
- (c) **Assertion :** Bond order can assume any value number including zero 6.
 - Reason Higher the bond order, shorter is bond length and greater is bond energy :
- (b)Assertion : 7. Ortho nitrophenol molecules are associated due to the presence of intermolecular hydrogen bonding while paranitrophenol involves intramolecular, hydrogen bonding Reason Ortho nitrophenol is more volatile than the paranitrophenol :

PACE		Chemical Bonding	Ch. XI
	(e)		
8.	Assertion :	Nitrogen molecule is diamagnetic.	
	Reason : (c)	N_2 molecule have unpaired electrons.	
9.	Assertion :	Ice is less dense than liquid water.	
	Reason : <mark>(a)</mark>	There are vacant spaces between hydrogen bonded water molecules in ice.	
10.	Assertion :	Water is liquid but H_2S is a gas.	
	Reason : (b)	Oxygen is paramagnetic.	
11.	Assertion :	Iodine is more soluble in water then in carbon tetrachloride.	
	Reason : (d)	Iodine is a polar compound.	
12.	Assertion :	o and p-nitrophenols can be separated by steam distillation.	
	Reason : (a)	o -nitrophenol have intramolecular hydrogen bonding while p -nitrophenol associated molecules.	exists as
13.	(a) Assertion :	Fluorine has lower reactivity.	
15.	Reason :	F - F bond has low bond dissociation energy.	
	(e)	1 1 bolid has low bolid dissociation chorgy.	
14.	Assertion :	σ is strong while π is a weak bond.	
	Reason : <mark>(c)</mark>	Atoms rotate freely about π bond.	
15.	Assertion :	The crystal structure gets stabilized even though the sum of electron gain en	nthalpy

15.	Assertion	The crystal structure gets stabilized even though the sum of electron gain enthalp
		and ionization enthalpy is positive.
	Reason	Energy is absorbed during the formation of crystal lattice.

	<mark>(c)</mark>	
16.	Assertion :	Order of lattice energy for same halides are as LiX > NaX > KX
	Reason :	Size of alkali metal increases from Li to K.

- (a) 17. Assertion : Born-Haber cycle is based on Hess's law.
 - Reason Lattice enthalpy can be calculated by Born- Haber cycle. :
- (b) 18. Assertion : Bond energy has order like $C - C < C = C < C \equiv C$.
 - Reason Bond energy increases with increase in bond order. :
- 19. Assertion : Electron affinity refers to an isolated atom's attraction for an additional electron while electronegativity is the ability of an element to attract electrons towards itself in a shared pair of electrons.
 - Reason Electron affinity is a relative number and electronegativity is experimentally : measurable. (c)
- 20. Assertion : Geometry of SF_4 molecule can be termed as distorted tetrahedron, a folded square or see saw.
 - Reason Four fluorine atoms surround or form bond with sulphur molecule. :
- (b) 21. Assertion : BF_3 has greater dipole moment than H_2S .
 - Fluorine is more electronegative than sulphur. : Reason

<mark>(e)</mark>

(a)

PA	CE	Chem	ical Bonding	Ch. XI		
22.	Assertion :		ntical nonmetal atoms has	a pair of electrons with identical		
	Reason : (d)	spin. Electrons are transferred fu	lly from one atom to anoth	her.		
23.	Assertion :	B ₂ molecule is diamagnetic				
	Reason : (d)	The highest occupied molec	cular orbital is of σ type.			
24.	Assertion :	ice molecule to form hydro	-	out the oxygen atom allows each s four neighbouring water		
	Reason :	molecules. In ice each molecule forms space.	four hydrogen bonds as e	ach molecule is fixed in the		
25.	<mark>(a)</mark> Assertion :	The head order of helium is	alwaya zoro			
23.	Reason :	The bond order of helium is The number of electrons in	-	l and antibonding molecular		
	<mark>(a)</mark>	orbital is equal.				
	<u>(a)</u>					
		PREVIOUS Y	EARS QUESTION	S		
1.	Among the fo	ollowing group which represe		ectronic species? [CBSE AIMPT 2000]		
	(a) NO, CN ⁻	$, N_2, O_2^-$	(b) NO^+, C_2^2, O_2^-, CO			
	(c) $N_2, C_2^{2-},$	CO, NO	(b) NO^+, C_2^2, O_2^-, CO (d) CO, NO^+, CN^-, C_2^2	-		
	Number of el In CO = 6+8 In NO ⁺ = 7 + In CN ⁻ =6+7+ In $C_2^{2-} = 12+$	=14 8 - 1 = 14 7 = 14 -2=14		e species.		
	Hence, all ha	ve 14 electrons, so they are is	oelectronic species			
2.	Which one of	f the following is not paramag	netic?	[CBSE AIPMT 2000]		
	(a) NO	(b) N_2^+		d) O_2^-		
	In the given	c character is shown by those compounds CO is not paran of CO molecule is		have unpaired electrons. ot have unpaired electrons. The		
	CO(14) =	$\sigma 1s^2, \sigma 1s^2, \sigma 2s^2, \sigma 2s^2, \sigma 2p_x^2$	z , $\pi 2p_y^2 = \pi 2p_z^2$			
3.	The relations	hip between the dissociation e	energy of N_2 and N_2^+ is	[CBSE AIPMT 2000]		
	(a) dissociation energy of N_2^+ > dissociation energy of N_2					
	(b) dissociation energy of N_2 = dissociation energy of N_2^+					
	(c) dissociati	on energy of N ₂ > dissociation	energy of N_2^+			
		on energy of N_2 can either be tion energy will be more w	-	dissociation energy of N_2^+ be greater and bond order \propto		

PACE

Ch. XI

 $N_{2}(14) = \sigma 1s^{2}, \sigma 1s^{2}, \sigma 1s^{2}, \sigma 2s^{2}, \pi 2p_{y}^{2} = \pi 2p_{z}^{2}, \sigma 2p_{x}^{2}$ So bond order of $N_{2} = \frac{N_{b} - N_{a}}{2} = \frac{10 - 4}{2} = 3$ And bond order of $N_{2}^{+} = \frac{9 - 4}{2} = 2.5$

As the bond order of N_2 is greater than N_2^+ so, the dissociation energy of N_2 will be greater than N_2^+ .

4.

5. Which one of the following is planar?
(a) XeF₄ (b) XeO₄
Structure of XeF₄ is as follows

(c) XeO₃F

[**CBSE AIMPT 2000**] (d) XeO₃F₂

It involves sp^3d^2 hybridisation in Xe-atom. The molecules has square planar structure. Xe and four F –atoms are coplanar. The lone pair are present on axial positions, minimize electron pair repulsion.

- 6. A compound contains atoms A, B and C. If the oxidation number of A is +2, B is +5 and that of C is -2, the possible formula of the compound is [CBSE AIMPT 2000] (a) $A_2(BC_3)_2$ (b) $A_3(BC_4)_2$ (c) $A_3(B_4C)_2$ (d) ABC_2 In $A_3(BC_4)_2$ 3x oxidation number of A + 2 [oxidation number of B + 4× oxidation number of C] =0 3×(+2)+2[5+4×(-2)]=06+2[-3]=0
- Main axis of a diatomic molecule is z, molecular orbital p_x and p_y overlaps to form which of the following orbitals. [CBSE AIMPT 2001]
 - (a) π -molecular orbital (c) δ -molecular orbital
- (b) σ -molecular orbital
- bital (d) No bond will form
- For π -overlap the lobes of the atomic orbitals are perpendicular to the line joining the nuclei

 $\begin{array}{c} + \\ + \\ - \\ - \\ - \\ \end{array} \begin{array}{c} + \\ - \\ - \\ - \\ \end{array} \begin{array}{c} + \\ - \\ - \\ - \\ \end{array} \begin{array}{c} + \\ - \\ - \\ - \\ \end{array} \begin{array}{c} + \\ - \\ - \\ - \\ \end{array} \begin{array}{c} + \\ - \\ - \\ - \\ \end{array}$

- 8. In X H ---Y, X and Y both are electronegative elements, then [CBSE AIMPT 2001]
 (a) electron density on X will increases and on H will be decrease
 - (b) In both electron density will increase
 - (c) in both electron density will decrease
 - (d) On X electron density will decrease and on H increase

In X - H - Y, X and Y both are electronegative elements, then electron density on X will increase and on H will decrease.

PA	CE		Chemical Bonding	Ch. XI	
).	Which of the fol	llowing two are isostr	ructural?	[CBSE AIPMT 2001]	
	(a) XeF ₂ and IF	2	(b) NH ₃ amd B	F ₃	
	(c) CO_3^{2-} and S	SO_3^{2-}	(d) PCl ₅ and IC	Cl ₅	
	Compounds have	ving same structure a	nd same hybridization	are known as isostructural species e.g	
	XeF_2 and IF_2^- and	re sp ³ d hybridized and	l same hybridization an	d both have linear shape.	
	$F-I^{-}-FF-X$	e– F			
10.	In which of the f	following, bond angle	is maximum?	[CBSE AIPMT 2001]	
	(a) NH ₃	(b) NH <mark>4</mark>	(c) PCl ₃	(d) SCl_2	
	In <mark>NH4</mark> bond a	ngle is maximum (nea	rer 109 ⁰) due to its tetr	ahedral geometry.	
1.	Which of the fol	llowing has $p\pi - d\pi$ b	onding	[CBSE 2002]	
	(a) NO_{3}^{-}	(b) CO_3^{-2}	(c) BO_3^{-3}	(d) SO_3^{-2}	
12.	In NO ₃ ion number of bond pair and lone pair of electrons on nitrogen atom are				
			(0) 1 2	[CBSE AIPMT 2002]	
	(a) 2, 2 $I_{\rm A} = NO^{-1}$ is a	(b) 3, 1	(C) 1, 3	(d) 4, 0	
	In NO_3^- ion				
		×N × ×× · ⊙;			
	Nitrogen has fou bond.	ir bond pair and zero	lone pair of electrons,	due to the presence of one coordination	
13.				K bonds at 180° is [CBSE PMT 2004]	
	(a) Six	(b) Four	(c) Three hubrid orbitals (ap ³ d ²	(d) Two c) are directed towards the corners of	

In octahedral structure MX₆, the six hubrid orbitals (sp³d²) are directed towards the corners of a regular octahedral with an angle of 90⁰. According to following structure of MX₆, the number of X – M–X bonds at 180⁰ must be three.

14. In an octahedral structure, the pair of d orbitals involved in sp^3d^2 hybridization is

(a) d_{x^2}, d_{xz} (b) d_{xy}, d_{yz} (c) $d_{x^2-y^2}, d_{z^2}$ (d) $d_{xz}, d_{x^2-y^2}$

In the formation of d^2sp^3 hybrid orbitals, two (n - 1) d-orbitals of e_g set i.e., $(n - 1)d_{z^2}$ and $(n - 1)d_{x^2-v^2}$ orbitals, one n s and three np(np_x, np_y and np_z) orbitals combine together.

- 15. Among the following the pair in which the two species are not isostructural is
 - (a) BH_4^- and NH_4^+ (b) PF_6^- and SF_6 (c) SiF_4 and SF_4 (d) IO_3^- and XeO_3^-
- 16. H₂O is dipolar, when BeF₂ is not =. It is because [CBSI
 (a) the electronegativity of F is greater than that of O
 (b) H₂O involves hydrogen bonding whereas BeF₂ is a discrete molecule
 (c) H₂O is linear and BeF₂ is angular
 - (d) H_2O is angular and BeF_2 is linear

The structure of H_2O is angular or V-shape and has sp³-hybridisation and 104.5⁰ bond angle. Thus, its dipole moment is positive or more than zero.

But in BeF₂, structure is linear due to sp hybridization ($\mu = 0$)

Thus, due to $\mu > 0$, H₂O is dipolar and due to $\mu = 0$, BeF₂ is non-polar.

- 17. In BF₃ molecule, the lone pairs occupy equatorial position to minimize. [CBSE AIPMT 2004]
 - (a) lone pair-bond pair repulsion
 - (b) bond pair-bond pair repulsion
 - (c) lone pair-lone pair repulsion and lone pair-bond pair repulsion
 - (d) lone pair-lone pair repulsion.

In BrF_3 molecule, Br is sp^3d hybridized, but its geometry is T-shaped due to distortion of geometry from trigonal bipyramidal to T-shaped by the involvement of lone pair-plone repulsion

Here lp - lp respulsion = 0 lp - bp repulsion = 4 bp - bp repulsion = 2

- 18. Which of the following would have a permanent dipole moment? [CBSE AIPMT 2005]
 (a) BF₃
 (b) SiF₄
 (c) SF₄
 (d) XeF₄
- 19. The electronegativity difference between N and F is greater than that between N and H yet the dipole moment of NH_3 (1.5 D) is larger than that of NF_3 (0.2 D). This is because:

[CBSE Med 2006]

- (a) in NH₃ the atomic dipole and bond dipole are in the same direction whereas in NF₃, the same opposite directions.
- (b) in NH₃ as well as NF₃ the atomic dipole and bond dipole are in opposite direction.
- (c) in NH_3 the atomic dipole and bond dipole are in the opposite directions whereas in NF_3 these are in the same direction
- (d) in NH_3 as well as in NF_3 the atomic dipole and bond dipole are in the same direction.

F is more electronegative than N, therefore direction of bond is form N to F whereas N is more electronegative than H, the direction of the bond is from H to N. Yhus whereas resultant moment of

[CBSE AIPMT 2004]

[CBSE PMT 2004]

N - H bonds adds up to the bond moment of lone pair, that of 3N - F bonds partly cancel the resultant moment of lone pair. Hence, the net dipole moment of NF₃ is less than that of NH₃.

20. In which of the following molecules are all the bonds not equal? [CBSE AIPMT 2006] (a) ClF₃ (b) BF₃ (c) AlF₃ (d) NF₃ In ClF₃ all bonds are not equal due to its trigonal-bipyramidal (sp³d hybridization) geometry

BF₃ and Alf₃ show trigonal symmetric structure due to sp² hybridisation.

And

33

F——Al

NF₃ shows pyramidal geometry due to sp³ hybridisation

F Sbp+1/p

21. Which of the following is not a correct statement.

[CBSE AIPMT 2006]

- (a) The electron deficient molecule can act as Lewis acids.
 - (b) The canonical structures have no real existence
 - (c) Every AB₅ molecule does infact have square pyramid structure

(d) Multiple bonds are always shorter than corresponding single bond.

Generally, AB₅ molecules have trigonal bipyramidal structure due to sp³ hybidisation but in some cases due to presence of lone pair of electrons, its geometry becomes distorted.

22. Which of the following is not isostructural with SiCl₄? [CBSE AIPMT 2006] (a) SCl₄ (b) SO₄²⁻ (C) PO₄³⁻ (D) NH₄⁺

SCl₄ is not isostructural with SICl₄ because it shows square planar structure due to involvement of repulsion between lone pair and bond pair of electrons.

 SO_4^{2-} shows tetrahedral structure due to sp³ hybridisaton.

 PO_4^{3-} shows tetrahedral structure due to sp³hybridisaton.

Angular shape (due to sp² hybridisation of central atom or ion)

	CE		Chemical Bonding	Ch. XI
26	(a) 1 sigma and 2(c) 1 sigma and 1In case of single be	pi-bonds ond, there is only o ds Thus angular sh	(b) 2 sigma and 2 pi-b (d) 2 sigma and 1 pi-b ne σ and one π -bonds while σ	
27.	CH₃OH to a gas?(a) Dipole-diople(c) London disperIn between CH₃OF	interactions rson force I molecules interm	(b) Covalent bonds (d) Hydrogen bondin olecular H-bonding exist.	e overcome in converting liquid [CBSE PMT 2009] g. converting liquid CH ₃ OH to gas
28.	Four diatomic spectrum increasing in them (a) $C_2^{2-} < He_2^+ < O_2^-$ (c) $NO < O_2^- < C_2^{2-}$		low. Identify the correct of (b) $He_2^+ < O_2^- < NO < O_2^-$ (d) $O_2^- < NO < C_2^{2-} < H$	
30.	Which of the follow (a) IF ₃	wing molecules has (b) PCl ₃	trigonal planar geometry? (c) NH ₃	[CBSE AIPMT 2009] (d) BF ₃
31.	of increasing bond (1) $N_2^- < N_2 < N_2^+$ (2) According to the m $N_2(7+7=14) = \sigma$ σ^2 Bond order $= \frac{10-2}{2}$ $N_2^-(7+7+1=15)$ $= \sigma 1s^2, \sigma 1s^2, \sigma 2s^2, \sigma^2 $	order? $\frac{2}{2} \frac{(2) N_2^{2-} < N_2^{-}}{(2) N_2^{2-} < N_2^{-}}$ molecular orbital the $\frac{1}{1s^2}, \sigma 1s^2, \sigma 2s^2$ $s^2, \sigma 2p_x^2 = 2p_y^2, \sigma 2p$ $\frac{4}{7} = 3$ $\frac{\pi}{\sigma} 2s^2,$	[CBSE AIPMT 2 $< N_2$ (3) $N_2 < N_2^{2-} < 1$ eory (MOT).	rank the nitrogen species in terms 2009] N_2^- (4) $N_2^- < N_2^{2-} < N_2$
		following species d	bes not exist under normal con	nditions? [CBSE AIPMT. 2010]

PACE

36

33.

COLLEGES: ANDHERI / BORIVALI / CHEMBUR / DADAR / KALYAN / KHARGHAR / NERUL / POWAI / THANE

33. In which of the following pairs of molecules/ions, the central atoms have sp² hybridisation? [CBSE AIPMT 2010]
(a) NO₂ and NH₃ (b) BF₃ and NO₂ (c) NH₂ and H₂O (d) BF₃ and NH₂
For sp³ hybridisation there must be 3\sigma bonds or 2\sigma-bonds along with a lone pair of electrons.
i) NO₂
$$\Rightarrow 2\sigma + 1/p = 3$$
, i.e. sp² hybridization
ii) NH₃ $\Rightarrow 3\sigma + 0/p = 3$, i.e. sp³ hybridization
iii) BF₃ $\Rightarrow 3\sigma + 0/p = 3$, i.e. sp³ hybridization
iv) NH₂ $\Rightarrow 2\sigma + 2lp = 4$, i.e. sp³ hybridization
v) H₂O $\Rightarrow 2\sigma + 2lp = 4$, i.e. sp³ hybridization
Thus among the given pairs, only BF₃ and NO₂ have sp² hybridisation.
34. In which one of the following species the central atom has the type of hybridization which is not the
same as that present in the other three? [CBSE AIPMT 2010]
(a) SF₄ (b) I₃ (c) SbCl₅⁻ (d) PCl₅
Molecules having same hybridization have same number of hybrid orbitals.
H = $\frac{1}{2}$ [V + X - C + A]
Where,
V = number of valence electrons of central atom
C = number of valence electrons of central atom
C = number of valence electrons of central atom
SbCl₅² = sp³d2, PCl₅ = sp³d
SF₄ = sp³d, I₃⁻ = sp³d
35. Which of the following has the minimum bond length?
(a) O₂ (b) O₅ (c) O₅² (d) O₂
Bond order of O₂[±] = $\frac{10-5}{2} = 2.5$
Bond order of O₂[±] = $\frac{10-5}{2} = 2.5$
Bond order of O₂[±] = $\frac{10-8}{2} = 1.5$
Bond order of O₂[±] = $\frac{10-8}{2} = 1$
Bond order of O₂[±] = $\frac{10-8}{2} = 2$
 \because Maximum bond order = minimum bond length
 \therefore Bond length is minimum for O¹₂
36. Which of the following is least likely to behave as Lewis base? [CBSE AIPMT 2011]
(a) NH₁ (b) BF₁ Na₁
(c) OIF
BF₁ is an electron deficient species, thus behave like a Lewis acid
 \because Bond order = $\frac{N_b - N_a}{2}$

PAC	E	Chem	ical Bonding	Ch. XI
37.	Considering the state which is linear?	e of hybridization of a	carbon atoms, find out [CBSE AIPMT]	the molecule among the following 2011]
	(a) $CH_3 - C \equiv C - C_1$	H ₃	(b) $CH_2 = CH - CH$	$I - CH_2 - C \equiv CH$
	(c) $CH_3 - CH_2 - CH_2$	$H_2 - CH_3$	(d) $CH_3 - CH = CH$	-CH ₃
	$H_3 C - C \equiv C - C H_3 H_3$	is linear because C ₂ an	d C ₃ are sp hybridized	carbon atom.
38.	Which of the two io	ns from the list given	below, have the geor	netry that is explained by the same
	hybridization of orbi	tals, NO_2^- , NO_3^- , NH_2^-	$, \mathrm{NH}_4^+, \mathrm{SCN}^-?$	[CBSE AIPMT 2011]
	(a) NH_4^+ and NO_3^-	(b) SCN^{-} nad NH_{2}^{-}	(c) NO_2^- and NH_2^-	(d) NO ₂ and NO ₃
	$NO_2^- \rightarrow sp^2$			
	$NO_3^- \rightarrow sp^2$			
	$NO_2^+ \rightarrow sp^3$			
	$NO_2 \rightarrow sp$ $NH_4^- \rightarrow sp^3$			
	$SCN^+ \rightarrow sp$			
	NO_2^- and NO_3^- both	have the same hybrida	ation i.e. sp^2 .	
39.	The pair of species w	vith the same bond ord	ler is	[NEET 2013]
	(a) NO, CO	(b) N ₂ , O ₂	(c) O_2^{2-}, B_2	(d) O_2^+, NO^+ .
40.	Which of the followi	ng is paramagnetic?		[NEET 2013]
	(a) NO ⁺	(b) CO	(c) O_2^-	(d) CN ⁻
41.	Which of the followi	ng is a polar molecule	?	[NEET 2013]
	(a) BF ₃	(b) SF_4	(c) SiF ₄ n-polar although they	(d) XeF ₄

bond dipole of one bond is cancelled by that of the other. BF₃,SIF₄ and XeF₄ being symmetrical as non-polar, SF4 is unsymmetrical because of the presence of a lone pair of electrons. Due to which it is a polar molecule.

42. Which of the following species contains three bond pairs and one lone pair around the central atom?

[NEET 2013]

(c) NH_2^- (a) H₂O (b) BF₃ (d) PCl •0• Н́ (a) $H_2O \Rightarrow$ (2bp + 2lp) [bp = bond pair and lp = lone pair]F (3bp + 0 lp) (b) $BF_3 \Rightarrow$

COLLEGES: ANDHERI / BORIVALI / CHEMBUR / DADAR / KALYAN / KHARGHAR / NERUL / POWAI / THANE

43.

44.

45.

46.

0

PACE

47. Which of the following species contains equal number of σ and π -bonds? [CBSE AIPMT 2015]

(c) $(CN)_2$

(a)
$$HCO_3^-$$
 (b) XeO_4

Structure
$$\sigma$$
 and π bonds(a)0 σ bonds - 4(b)0 σ bonds - 4(b)0 σ bonds - 4 π bonds -4 π bonds -4 σ bonds -4 π bonds -4 σ bonds -4 π bonds -4 σ bonds -4 π bonds -4(c)N = C - C = N σ bonds - 3 π bonds -4 π bonds -4(d)H σ bonds - 6H H σ bonds - 4

48. Which of the following pairs of ions are isoelectronic and isostructural? [**CBSE AIMPT 2015**] (a) CO_3^{2-} , SO_3^{2-} (b) CIO_3^{-} , CO_3^{2-} (c) SO_3^{2-} , NO_3^{-} (D) CIO_3^{-} , SO_3^{2-} $CIO_3^{-} - SO_3^{2-}$

$$0 = C \begin{pmatrix} 0^{-} & 0 \\ 0^{-} & 0 \end{pmatrix} N = 0^{-}$$

Number of electrons $CO_3^{2-} = 6+2+24 = 32$ $SO_3^{2-} = 16+2+24 = 42$ $CIO_3^{-} = 4+24+1 = 42$ $CO_3^{2-} = 6+24+2 = 32$ $NO_3^{-} = 7+2+24 = 33$

39

Hence ClO_3^- and SO_3^{2-} are isoelectronic and are pyramidal in shape.

(d) CH₂(CN)₂

PAC	Chemical Bonding	Ch. XI
49.	Which of the options represent the correct bonder order? (a) $O_2^- < O_2 < O_2^+$ (b) $O_2^- > O_2 < O_2^+$ (c) $O_2^- < O_2 > O_2^+$ (d)	[AIPMT 2015] $O_2^- > O_2 > O_2^+$
50.	 Predict the correct order among the following: (a) lone pair – lone pair > bond pair – bond pair > lone pair – bond pair (b) bond pair – bond pair > lone pair – bond pair > lone pair – lone pair (c) lone pair – bond pair > bond pair – bond pair > lone pair – lone pair (d) lone pair – lone pair > lone pair – bond pair > bond pair – bond pair According to the postulate of VSEPR theory, a lone pair occupies more 	

pairs follow the order. Ip > lp > lp > bp > bp - bp

51. Consider the molecules CH_4 , NH_3 and H_2O . Which of the given statements is false?

[NEET 2016]

- (a) The H–O–H bond angle in H_2O is larger than the H–C–H bond angle in CH_4 .
- (b) The H–O–H bond angle in H_2O is smaller than the H–N–H bond angle in NH_3 .
- (c) The H–C–H bond angle in CH_4 is larger than the H–N–H bond angle in NH_3 .
- (d) The H–C–H bond angle in CH_4 , the H–N–H bond angle in NH_3 , and the H–O–H bond angle in H₂O are all greater than 90°.

since it lies closer to the central atom. This means that the repulsion between the different electron

As the number of lone pair of electrons on central element increases, repulsion between those lone pair of electrons increases and therefore, bond angle decreases.

Molecules Bond angle

CH₄ (no lone pair of electrons) 109.5⁰

 NH_3 (one lone pair of electrons) 107.5^0

H₂O (two lone pair of electrons) 104.45⁰

52.

53. The hybridizations of atomic orbitals of nitrogen in NO_2^+ , NO_3^- and NH_4^+ respectively are

[NEET 2016]

(a)	sp, sp^3 and sp^2	(b)	sp^2 , sp^3 and sp
<mark>(c)</mark>	sp, sp^2 and sp^3	(d)	sp^2 , sp and sp^3

Ion	Structure	Hybridisation
NO_2^+	O=N [±] −O	Sp
NO ₃		Sp^2
NH ₄	H	Sp ³

Thus, option (C) is correct.

PA	CE	Chemical	Bonding		Ch. XI
54.		owing pairs of ions is isoele			[NEET 2016]
	(a) CO_3^{2-}, NO_3^{-}	(b) $\text{ClO}_{3}^{-}, \text{CO}_{3}^{2-}$	(c)	SO_{3}^{2-}, NO_{3}^{-}	(d) $\text{ClO}_3^-, \text{SO}_3^{2-}$
55.	Which one of the	following pairs of species h	nave the	same bond order?	[NEET 2017]
55.	(a) CO, NO	• • •	(c) CN		N_2, O_2^-
		have same number of electron	· /		$(1, 2, 0)_2$
	Species	Number of electrons		sume bond order.	
	CO	6+8 = 14			
	NO	7 + 8 = 15			
	O ₂	8 + 8 = 16			
	NO^+	7+8-1 =14			
	CN ⁻	6 + 7 + 1 = 14			
	07	8+8+1=17			
	2	d CO have equal number o	of electro	ons. So, their bond	order will be same.
				,	
56.	Consider the follo	01			[NEET 2018]
	CN^+, CN^- , NO a				
	Which one of the	se will have the highest bon	d order?)	
	(a) CN^+	(b) CN	(c)	CN^-	(d) NO
57.	Which of the follo	owing diatomic molecular s	necies h	as only π -bonds a	ccording to molecular
57.	orbital theory?		peeles ii	[NEET (Nationa	
	(a) N_2	(b) C_2	(c)	Be ₂	$(d) O_2$
		pital configuration of C,	()	_	() -
	is				
	$C_{2}(Z = 12) = \sigma 1s^{2}$	$\sigma^{*}1s^{2}, \sigma 2s^{2}, \sigma^{*}2s^{2},$			
	$\pi 2p_x^2 = \pi 2p_y^2.$	10 10 1020 10 20 1			
	Double bond in C ₂	of the presence of last			
	(valence) four ele	ctrops in two			
	π -molecular orbit				
	The configuration	n of N_2 , Be ₂ and O_2 are as			
	follows:				
		σ 1s ² , σ 2s ² , σ 2s ² ,			
	$\pi 2p_x^2 = \pi 2p_y^2, \sigma 2p$	$z_{z}^{2}(1\sigma \text{ and } 2\pi\text{-bonds})$			
	$Be_2(Z=8)-\sigma 1s^2$	σ 1s ² , σ 2s ² , σ 2s ² (σ			
	bonds only)				
	$0.(7-16) - 0.16^{2}$	σ ¹ s^2 , $\sigma 2 s^2$, σ ² $2 s^2$,			
		$p_{y}^{2}, \pi^{*}2p_{x}^{1} = \pi^{*}2p_{z}^{1}(\sigma, \pi)$			
	and $1\pi^*$ bond)				
58.	Which of the follo	owing is paramagnetic?		[NEET (Odisha)) 2019]
20.	(a) N_2	(b) H ₂	(c)	Li ₂	$\frac{(d) O_2}{(d) O_2}$
	(u) 112	(0) \mathbf{H}_2	(0)		$(\mathbf{u}) = \mathbf{O}_2$

Key Idea If all the electron in a molecule are paired, the molecule is diamagnetic and if there are unpaired electrons in a molecule, it is paramagnetic.

Molecular orbital configuration of given molecules are as follows:

- (a) $N_2(Z = 14) \sigma 1s^2$, $\sigma * 1s^2$, $\sigma 2s^2$, $\sigma * 2s^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\sigma 2p_z^2$ It is a diamagnetic molecule due to absence of unpaired electron.
- (b) $H_2(Z=2) 1\sigma^2$ It is a diamagnetic molecule.
- (c) $\text{Li}_2(Z=6) \sigma 1s^2$, $\sigma * 1s^2$, $\sigma 2s^2$ It is a diamagnetic molecule.
- (d) $O_2(Z = 16) \sigma 1s^2$, $\sigma * 1s^2$, $\sigma 2s^2$, $\sigma * 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\pi * 2p_x^1 = \pi * 2p_y^1$ It is a paramagnetic molecule due to presence of unpaired electrons in each orbital of degenerate levels. Thus, option (d) is correct.
- 59. Match the xenon compounds in Column I with its structure in Column II and assign the correct code : [NEET (National) 2019]

	Column I		Column II
A.	XeF ₄	(i)	Pyramidal
B.	XeF ₆	(ii)	Square planar
C.	XeOF ₄	(iii)	Distorted octahedral
D.	XeO ₃	(iv)	Square pyramidal

Codes

	А	В	С	D
<mark>(a)</mark>	(ii)	(iii)	(iv)	(i)
(b)	(iii)	(iii)	(i)	(iv)
(c)	(iii)	(iv)	(i)	(ii)
(d)	(i)	(ii)	(iii)	(iv)

60. Which of the following is the correct order of dipole moment?

[NEET (Odisha) 2019]

(a) NH₃ < BF₃ < NF₃ < H₂O
(c) BF₃ < NH₃ < NF₃ < H₂O

(b) $BF_3 < NF_3 < NH_3 < H_2O$ (d) $H_2O < NF_3 < NH_3 < BF_3$

BF₃ has zero dipole moment as it is symmetrical in nature. H₂O has maximum dipole moment as it possess two line pair electrons. Between NH₃ NF₃, NH₃ and NF₃, both N possesses one lone pair of electrons.

This is because in case of NF_3 the net N - H bond dipole is in the same direction as the direction of dipole of lone pair. But in case of NF_3 , the direction of net dipole moment of three -N - F bonds is opposite to that of the dipole moment of the lone pair. Thus, the correct of dipole moment is

PACE

61. Which of the following set of molecules will have zero dipole moment ?

[NEET (Sept) 2020]

- (a) Boron trifluoride, hydrogen fluoride, carbon dioxide, 1,3-dichlorobenzene
- (b) Nitrogen trifluoride, beryllium difluoride, water, 1,3-dichlorobenzene
- (c) Boron trifluoride, beryllium difluoride, carbon dioxide, 1, 4-dichlorobenzene
- (d) Ammonia, beryllium difluoride, water, 1,4-dichlorobenzene

62.

43

63. Identify the wrongly matched pair. [NEET (Oct.) 2020]

- Molecule Shape of geometry of molecule
- (a) PCl₅ Trigonal planar
- (b) SF₆ Octahedral
- (c) BeCl₂ Linear
- (d) NH₃ Trigonal pyramidal

64.	Identify a molec	cule which does not exist.	[NEET (Sep.) 2020]	
	(a) Li ₂	(b) C ₂	(c) O_2	(d) He ₂

65. The potential energy (y) curve for H, formation as a function of internuclear distance (x) of the Hatoms is shown below. [NEET (Oct) 2020]

From the information mentioned in the above curve, bond energy (BE) of H₂ molecule is (b –a) or |b – a|

66. The correct sequence of bond enthalpy of 'C-X bond is (a) $CH_3 - F < CH_3 - Cl < CH_3 - Br < CH_3 - I$ (b) $CH_3 - F > CH_3 - Cl > CH_3 - Br > CH_3 - I$

(c)
$$CH_3 - F < CH_3 - CI > CH_3 - Br > CH_3 - I$$

(d) $CH_3 - CI > CH_3 - F > CH_3 - Br > CH_3 - I$
On moving down the group from F to I, the size of atom increases. Order of the size of halogen
atoms is $1 > Br > CI > F$. So, the bond length of $C - X$ bond also increases from F to I and hence, the
bond enthalpy decreases from F to I. Correct order of bond length of $C - X$ bond is
 $H_3C - H_3C - Br > H_3C - CI > H_3C - F$
Correct order of bond enthalpy is
 $H_3C - F > H_3C - CI > CH_3 - Br > H_3C - I$
67. Which of the following molecules is non-polar in nature? [NEET 2021]
(a) POCl₃ (b) CH_2O (c) $SbCl_5$ (d) NO₂
(a) PCl₃ Hybridisation = $\frac{1}{2} \times 8 = 4(sp^3)$
 $\int_{CI} \int_{CI} CI$
Shape = Tetrahedral
Dipole moment, $\mu \neq 0$
POCl₃ is polar in nature.
(b)

68. Match List-l with List-ll.

	List – I		List – II
A.	PCl ₅	I.	Square pyramidal
B.	SF_6	II.	Trigonal planar
C.	BrF ₅	III.	Octahedral
D.	BF ₃	IV.	Trigonal bipyramidal

Choose the correct answer from the options given below

	А	В	С	D
(a)	IV	III	Ι	II
(b)	II	III	IV	Ι
(c)	III	Ι	IV	Π
(d)	IV	III	II	Ι

44

69. BF₃ is planar and electron deficient compound. Hybridisation and number of electrons around the central atom, respectively are [NEET 2021]

(a) sp^3 and 4 (b) sp^3 and 6 (c) sp^2 and 6 (d) sp^2 and 8 Hybridisation of a central atom can be calculate by using the formula Hybridisation = $\frac{1}{2}$ [Number of valence electrons + Number of side atoms – Positive charge + Negative charge] Electronic configuration of B = $1s^2$, $2s^2$, $2p^1$ Number of valence electrons in B = 3 electron in last shell, n = 2 Number of side atoms in BF₃ = 3F – atoms

[NEET 2021]

So, hybridization =
$$\frac{1}{2}(3+3) = \frac{1}{2} \times 6 = 3$$

Hybridisation of B in BF₃ is sp²

Number of electrons around central atom, B in BF₃ is equal to the number of electrons in three sigma bonds (B - F) i.e. = 3B - F bonds $\times 2$ electrons in one σ -bond

70. Which amongst the following is INCORRECT statement? [NEET 2022]

(1) The bond orders of O_2^+ , O_2^- , O_2^- and O_2^{2-} are 2.5, 2, 1.5 and 1, respectively

- (2) C₂ molecule has four electrons in its two degenerate π molecular orbitals
- (3) H_2^+ ion has one electron
- (4) O_2^+ ion is diamagnetic

 O_2^+ has one unpaired electron.

71. Amongst the following which one will have maximum 'lone pair-lone pair' electron repulsions?

(1) IF ₅ (3)	(2) SF ₄	(3) XeF ₂	[NEET 2022] (4) ClF ₃
No. of	lone pair 1	molecule IF5	
	2	SF_4	
	3 2	XeF ₂ ClF ₃	
	-	Chy	

72. Identify the incorrect statement from the following.

[NEET 2022]

[NEET 2022]

- (1) All the five 4d orbitals have shapes similar to the respective 3d orbitals.
- (2) In an atom, all the five 3d orbitals are equal in energy in free state.
- (3) The shapes of d_{xy} , d_{yz} , and d_{zx} orbitals are similar to each other; and $d_{x^2-y^2}$ and d_{z^2} are similar to each other.

to each other.

(4) All the five 5d orbitals are different in size when compared to the respective 4d orbitals. The shapes of dxy, dyz, dzx and dx^2y^2 are similar to each other.

73. Given below are two statements:

Statement I:

The boiling points of the following hydrides of group 16 elements increases in the order- $H_2O < H_2S < H_2Se < H_2Te$.

Statement II:

The boiling points of these hydrides increase with increase in molar mass.

In the light of the above statements, choose the most appropriate answer from the options given below:

(1) Both Statement I and Statement II are incorrect

- (2) Statements I is correct but Statement II is incorrect
- (3) Statement I is incorrect but statement II is correct
- (4) Both Statement I and Statement II are correct
- $H_2O(100^{\circ}C)$ $H_2S(-60^{\circ}C)$

 $H_2Se(-41.25^{\circ}C)$ $H_2Te(-2.2^{\circ}C)$

Assertion (A): ICl is more reactive than I_2 .

Reason (R): I-C1 bond is weaker than I-I bond.

In the light of the above statements choose the most appropriate answer from the options given below:

- (1) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
- (2) (A) is correct but (R) is not correct.
- (3) (A) is not correct but (R) is correct.

(4) Both (A) and (R) are correct and (R) is the correct explanation of (A)

ICl is more reactive than I_2 due to ionic character of the bond.

76. Which of the following statements is not correct about diborane? [NEET 2022]

- (1) The four terminal B–H bonds are two centre two electron bonds.
- (2) The four terminal Hydrogen atoms and the two Boron atoms lie in one plane.
- (3) Both the Boron atoms are sp^2 hybridized.
- (4) There are two 3–centre–2–electron bonds.

In diborane both the boron atoms are sp³ hybridised