Advanced Booklet Solution Wave Optics

JEE Main Exercise

1. (A)

If λ is the wavelength in vacuum, then $\lambda_{1}=\frac{\lambda}{\mu_{g}}$ and $\lambda_{2}=\frac{\lambda}{\mu_{w}}$ are the wavelength in glass and water respectively.
Then, $\frac{4}{\lambda_{1}}=\frac{5}{\lambda_{2}} \quad \Rightarrow \frac{4 \lambda}{\mu_{w}}=\frac{5 \lambda}{\mu_{g}}$
$\therefore \mu_{g}=\frac{5}{4} \mu_{w}=\frac{5}{4} \times \frac{4}{3}=\frac{5}{3}$
2. (A)

In the liquid, the frequency v remains same and wavelength λ^{\prime} becomes $\lambda^{\prime}=\frac{\lambda}{\mu}=\frac{\lambda}{3 / 2}=\frac{2}{3} \lambda$
3. (A)

Here, $\frac{I_{1}}{I_{2}}=9$
$\frac{I_{\max }}{I_{\min }}=\frac{\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}}{\left(\sqrt{\frac{I_{1}}{I_{2}}}-1\right)^{2}}=\left(\frac{3+1}{3-1}\right)^{2}=4$
4. (B)
$\frac{I_{1}}{I_{2}}=\beta$

$$
\begin{aligned}
\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }} & =\frac{\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}-\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}}{\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}+\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}} \\
& =\frac{4 \sqrt{I_{1} I_{2}}}{2\left(I_{1}+I_{2}\right)}=\frac{2 \sqrt{I_{1} / I_{2}}}{1+I_{1} / I_{2}}=\frac{2 \sqrt{\beta}}{1+\beta}
\end{aligned}
$$

5. (B)

As the three waves are coherent with successive phase difference of $\frac{\pi}{2}$, their amplitude in vector form can be written as
$12 \hat{i} \mathrm{~mm}, 6 \hat{i} \mathrm{~mm}$ and $-4 \hat{i} \mathrm{~mm}$
Their vector sum is $\vec{A}=12 \hat{i}+6 \hat{j}+(-4 \hat{i})=(8 \hat{i}+6 \hat{j}) \mathrm{mm}$
Its magnitude is $\sqrt{8^{2}+6^{2}}=10 \mathrm{~mm}$
6. (D)

As the lights emergent from the two filters have difference wavelengths, the interference pattern will not be formed.
7. (D)

The distance of second dark fringe from central fringe is

$$
\begin{aligned}
& \frac{3}{2} \frac{\lambda D}{d}=1 \mathrm{~mm} \\
\Rightarrow & \frac{3}{2} \times \frac{\lambda \times 1}{0.9 \times 10^{-3}}=10^{-3} \\
\therefore \quad & \lambda=0.6 \times 10^{-6} \mathrm{~m}=6 \times 10^{-5} \mathrm{~cm}
\end{aligned}
$$

8. (C)

$$
\begin{aligned}
& \omega=\frac{\lambda D}{d} \quad \Rightarrow \frac{\omega_{2}}{\omega_{1}}=\frac{\lambda_{2}}{\lambda_{1}} \\
& \Rightarrow \omega_{2}=\frac{\lambda_{2}}{\lambda_{1}} \omega_{1}=\frac{6000}{5000} \times 1=1.2 \mathrm{~mm}
\end{aligned}
$$

9. (A)

For a maxima at distance x from central maxima, we have

$$
\begin{aligned}
& x=\frac{n \lambda D}{d} \text { or } \lambda=\frac{x d}{n D} \\
\Rightarrow \quad \lambda & =\frac{10^{-3} \times 2 \times 10^{-3}}{2 \times 2.5}=\frac{0.8}{n} \times 10^{-6} \mathrm{~m}=\frac{8000}{b} \AA
\end{aligned}
$$

In the visible region, $\lambda=\frac{8000}{2}=4000 \AA$
10. (B)
$\lambda=600 \mathrm{~nm}$ and $d=2100 \mathrm{~nm}$
The maximum possible path difference is at infinity equal to d.
So, $\Delta p<2100 \mathrm{~nm}=3.5 \lambda$
Maximas are obtained when $\Delta p=n \lambda$ corresponding to $n=-3,-2,-1,0,1,2,3$
Hence, 7 maximas can be obtained.
11. (B)
P is the $11^{\text {th }}$ bright fringe from Q and $10^{\text {th }}$ bright fringe from O.
So, $S_{1} P-S_{2} P=10 \mu=10 \times 6000 \AA=6 \mu \mathrm{~m}$
12. (A)

The phase difference corresponding to a path difference of $\frac{\lambda}{6}$ is $\phi=\frac{\lambda}{6} \times \frac{2 \pi}{\lambda}=\frac{\pi}{3}$
$\Rightarrow \quad I=I_{0} \cos ^{2} \frac{\phi}{2}=I_{0} \cos ^{2} \frac{\pi}{6}$
$\therefore \quad \frac{I}{I_{0}}=\frac{3}{4}$
13. (A)

When $\Delta p=\lambda, \phi_{1}=2 \pi$ and when $\Delta p=\frac{\lambda}{3}, \phi_{2}=\frac{2 \pi}{3}$
$\Rightarrow \quad I=I_{\max } \cos ^{2}\left(\frac{\phi_{1}}{2}\right)=I_{\max }$ and $I^{\prime}=I_{\max } \cos ^{2}\left(\frac{\phi_{2}}{2}\right)=\frac{I_{\max }}{4}$
$\therefore \quad I^{\prime}=\frac{I}{4}$
14. (C)

The intensity at the centre is zero, if the fringe shift, $F S=(2 n+1) \frac{\omega}{2}$ or the optical path difference at centre is

$$
\begin{aligned}
\Delta p & =(2 n+1) \frac{\lambda}{2} \text { or } t(\mu-1)=(2 n+1) \frac{\lambda}{2} \\
\therefore \quad t_{\min } & =\frac{\lambda}{2(\mu-1)}
\end{aligned}
$$

15. (B)

For the total path difference to be zero,
$t(2 \mu-1)=2 t(\mu-1)+\frac{d y}{D} \quad \Rightarrow \frac{d y}{D}=t \quad \therefore y=\frac{t D}{d}$
16. (A)

As the lower ray is geometrically longer, mica sheet must be placed in front of S_{1} so that

$$
t(\mu-1)=\Delta p=\sqrt{2} d-d
$$

$\therefore \quad t=\frac{d(\sqrt{2}-1)}{1.5-1}=2(\sqrt{2}-1) d$
17. (B)

Diffraction and interference observed in light indicates wave nature of light.
18. (C)

Second maximum lies between 2nd minimum ($\Delta p=2 \lambda$) and 3rd minimum ($\Delta p=3 \lambda$)
For second maximum, $\Delta p=2.5 \lambda$

$$
\therefore \quad a \sin \theta=\frac{5}{2} \lambda
$$

19. (A)

The angular width of central maximum is

$$
\begin{aligned}
\frac{2 \lambda D / a}{D} & =\frac{2 \lambda}{a}=\frac{2 \times 6328 \times 10^{-10}}{0.2 \times 10^{-3}}=6.328 \times 10^{-3} \mathrm{rad} \\
& =6.328 \times 10^{-3} \times \frac{180}{\pi}=0.36^{\circ}
\end{aligned}
$$

20. (B)

Angular width of central maximum is

$$
\begin{aligned}
& \omega=\frac{2 \lambda}{a} \quad \Rightarrow \frac{\lambda_{2}}{\lambda_{1}}=\frac{\omega_{2}}{\omega_{1}}=0.7 \\
\therefore \quad & \lambda_{2}=0.7 \times 6000=4200 \AA
\end{aligned}
$$

21. (C)

The distance of second maximum from central maximum is
$\omega+\omega+\frac{\omega}{2}=\frac{5}{2} \frac{\lambda D}{2}=12 \mathrm{~mm}$
$\therefore \quad a=\frac{5 \times 6000 \times 10^{-10} \times 4}{2 \times 12 \times 10^{-3}}=5 \times 10^{-4} \mathrm{~m}=0.5 \mathrm{~mm}$
22. (A)
$I=I_{0}\left(\frac{\sin \beta}{\beta}\right)^{2}$ where, $\beta=\frac{\pi a \sin \theta}{\lambda}$
For the principal maxima,
$\theta=0 \quad \Rightarrow \beta=0 \quad \therefore I=I_{0}$.

Increasing the width of the slit will make central peak narrower but there will be no change in intensity at the centre.
23. (A)

If r is the distance of the poles from the person, then

$$
\begin{array}{ll}
& \alpha_{\min }=\frac{10}{r} \text { where, } \alpha_{\min }=\frac{1}{60} \times \frac{\pi}{180} \mathrm{rad} \\
\therefore & r=\frac{10 \times 60 \times 180}{\pi}=3.4 \times 10^{4} \mathrm{~m} \approx 34 \mathrm{~km}
\end{array}
$$

24. (C)

If $a_{-}=3 \mathrm{~mm}$ is the pupil diameter and D is the maximum distance at which the dots at distance x can be resolved by the eye, then the limit of resolution is $\frac{x}{D}=\frac{1.22 \lambda}{a}$
$\therefore \quad D=\frac{a x}{1.22 \lambda}=\frac{3 \times 10^{-3} \times 10^{-3}}{1.22 \times 500 \times 10^{-9}}=4.9 \mathrm{~m} \approx 5 \mathrm{~m}$.
25. (D)

In one rotation of polaroid, the transmission axis of the polaroid will be twice in line and twice perpendicular to the plane of polarisation of the incident light.
26. (C)

As the intensity of emergent light is reduced to half, the light which does not get transmitted is $\frac{I_{0}}{2}$.
27. (A)

If the intensity of unpolarised light is I_{0}, then the intensity of light transmitted through analyser is

$$
\frac{I_{0}}{2} \cos ^{2} 45^{\circ}=\frac{I_{0}}{4}
$$

As $I \propto A^{2}$, the amplitude of transmitted light is $\frac{A}{2}$.
28. (B)

The intensity of light transmitted through the combination is

$$
\frac{I}{2} \times \cos ^{2} \frac{\pi}{3} \times \cos ^{2} \frac{\pi}{3} \times \cos ^{2} \frac{\pi}{3}=\frac{I}{128}
$$

29. (C)
30. (7)

As the central bright fringe shifts to the position of 5th bright fringe, the optical path difference due to the glass plate is

$$
\begin{aligned}
& t(\mu-1)=5 \lambda \\
\therefore & t=\frac{5 \lambda}{\mu-1}=\frac{5 \times 7 \times 10^{-7}}{1.5-1}=7 \mu \mathrm{~m}
\end{aligned}
$$

31. (7)

$$
\lambda=5000 \AA, t=14 \mu \mathrm{~m}, \mu=1.25
$$

The optical path difference due to the sheet is

$$
\begin{aligned}
\Delta p & =t(\mu-1)=14 \times 10^{-6}(1.25-1)=3.5 \times 10^{-6} \mathrm{~m} \\
& =35000 \AA=7 \lambda
\end{aligned}
$$

So, the number of fringes shifted is 7 .
32. (1)

For a dark fringe at O, the path difference of the two rays reaching O from two slits is $\frac{\lambda}{2}$
$\Rightarrow \quad 2\left[\sqrt{D^{2}+d^{2}}-D\right]=\frac{\lambda}{2}$
$\Rightarrow 2\left[D\left(1+\frac{d^{2}}{D^{2}}\right)^{1 / 2}-D\right]=\frac{\lambda}{2}$
$\Rightarrow 2\left[D\left(1+\frac{d^{2}}{2 D^{2}}\right)-D\right]=\frac{\lambda}{2}$
$\Rightarrow \frac{d^{2}}{D}=\frac{\lambda}{2}$
$\therefore \quad d=\sqrt{\frac{\lambda D}{2}}=\sqrt{\frac{4000 \times 10^{-10} \times 5}{2}}=10^{-3} \mathrm{~m}=1 \mathrm{~mm}$
33. (0)
$\lambda=5000 \AA, d=0.5 \mathrm{~mm}, D=1 \mathrm{~m}, t=1.5 \mu \mathrm{~m}$
At the centre of screen, the path difference is only optical

$$
\begin{aligned}
\Rightarrow \Delta p & =t(\mu-1)=1.5 \times 10^{-6}(1.5-1)=7.5 \times 10^{-7} \mathrm{~m} \\
& =7500 \AA=\frac{3 \lambda}{2}
\end{aligned}
$$

So, there will be a destructive interference at the centre

$$
\therefore \quad n=0
$$

34. (9)

At upper surface of layer, reflected is at rarer to denser medium while on the lower surface, the reflection is at denser to rarer medium. So, the two rays differ in phase by π. For the two rays to interfere constructively,

$$
\begin{aligned}
& \Delta p=2 \mu t=(2 n+1) \frac{\lambda}{2} \\
\Rightarrow & t_{\min }=\frac{\lambda}{4 \mu}=\frac{648 \mathrm{~nm}}{4 \times 1.8}=90 \mathrm{~nm}=(10 \times 9) \mathrm{nm} \\
\therefore & P=9
\end{aligned}
$$

35. (6)
$D=80 \mathrm{~cm}, d=2 \mathrm{~mm}, t_{1}=25 \mu \mathrm{~m}, t_{2}=12.5 \mu \mathrm{~m}, \mu_{w}=4 / 3, \mu=1.4, \lambda=5000 \AA$
The wavelength in water is $\lambda_{w}=\frac{\lambda}{\mu_{w}}=\frac{5000 \AA}{4 / 3}=3750 \AA$
Taking the water as reference medium, the optical path difference at the centre of screen is

$$
\begin{aligned}
\Delta p & =t_{1}\left(\frac{\mu}{\mu_{w}}-1\right)-t_{2}\left(\frac{\mu}{\mu_{w}}-1\right)=\left(t_{1}-t_{2}\right)\left(\frac{\mu}{\mu_{w}}-1\right) \\
& =(25-12.5) \times 10^{-6} \times\left(\frac{1.4}{4 / 3}-1\right)=12.5 \times 10^{-6} \times 0.05 \mathrm{~m} \\
& =6250 \AA \\
\phi & =\frac{\Delta p}{\lambda_{w}} \times 2 \pi=\frac{6250}{3750} \times 2 \pi=\frac{10 \pi}{3}
\end{aligned}
$$

If the intensity of individual slit at the centre of screen is I_{0}, then the resultant intensity of light from the two slits is

$$
\begin{aligned}
& \Rightarrow \quad I_{R}=4 I_{0} \cos ^{2} \frac{\phi}{2}=4 I_{0} \cos ^{2} \frac{5 \pi}{3}=I_{0} \\
& \Rightarrow \quad \frac{I_{R}}{I_{0}}=1=\frac{6}{6} \\
& \therefore \quad n=6
\end{aligned}
$$

36. (4)

$$
\lambda=450 \mathrm{~nm}, \mu=1.5, \theta=(1 / 20)^{\circ}, x=43 n \times 10^{-6} \mathrm{~m}
$$

$$
2 \mu t_{1}=k \lambda \text { and } 2 \mu t_{2}=(k+1) \lambda
$$

$$
\Rightarrow \quad 2 \lambda\left(t_{2}-t_{1}\right)=\lambda
$$

$$
\Rightarrow \frac{\lambda}{2 \mu}=t_{2}-t_{1}=(a+x) \theta-a \theta=x \theta
$$

$$
\Rightarrow \quad \frac{450 \times 10^{-9}}{2 \times 1.5}=43 n \times 10^{-6} \times \frac{1}{20} \times \frac{\pi}{180}
$$

$$
\therefore \quad n=\frac{36 \times 45}{3 \times 43 \pi} \approx 4
$$

1. (D)

It will be concentric circles because locus of all the point having same path difference lies on concentric circle.
2. (C)

Relation between intensities

$\mathrm{I}_{\mathrm{r}}=\left(\frac{\mathrm{I}_{0}}{2}\right) \cos ^{2}\left(45^{\circ}\right)=\frac{\mathrm{I}_{0}}{2} \times \frac{\mathrm{I}}{2}=\frac{\mathrm{I}_{0}}{4}$
3. (A)

Fringe width $B=\frac{D}{d} \lambda$
And number of fringes observed in the field of view is obtained by $\frac{d}{\lambda}$.
4. (C)

Wavelength of radio waves is greater than microwaves hence frequency of radio waves is less than microwaves.
The degree of diffraction is greater whose wavelength is greater.
5. (D)

Intensity $\propto(\text { amplitude })^{2}$
$\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{19}{6}=\frac{\mathrm{a}_{1}^{2}}{\mathrm{a}_{2}^{2}}$
$\Rightarrow a_{1}=4 ; a_{2}=3$
Therefore the ratio of intensities of bright and dark parts
$\frac{I_{\text {Bright }}}{I_{\text {Dark }}}=\frac{\left(a_{1}+a_{2}\right)^{2}}{\left(a_{1}-a_{2}\right)^{2}}=\frac{(4+3)^{2}}{(4-3)^{2}}=\frac{49}{1}$
6. (B)

In a single slit experiment,
For diffraction maxima,
$a \sin \theta=(2 n+1) \frac{\lambda}{2}$ and for diffraction minima,
$\mathrm{a} \sin \theta=\mathrm{n} \lambda$
According to question,
$(2 \times 1+1) \frac{\lambda}{2}=1 \times 6600(\because \lambda=6600 \AA)$
$\Rightarrow \lambda=\frac{6600 \times 2}{3} \Rightarrow \lambda=4400 \AA$
7. (C)

Resolving power of microscope,
R.P. $=\frac{2 \mathrm{n} \sin \theta}{\lambda}=\frac{2 \mathrm{n} \sin 2 \beta}{\lambda} \Rightarrow$ R.P. $\propto \mathrm{n} \sin 2 \beta$
$\lambda=$ Wavelength of light used to illuminate the object
$\mathrm{n}=$ Refractive index of the medium between object and objective
$\theta=$ Angle of the cone
$\beta=$ Angle made by diameter of objective lens at focus.
8. (C)
$\beta_{\text {diffrac }}=2\left(\frac{\mathrm{D} \lambda}{\mathrm{a}}\right), \mathrm{a}=$ slit width
$\beta_{\text {interfer }}=\frac{\mathrm{D} \lambda}{\mathrm{d}} \quad \therefore \frac{2 \mathrm{D} \lambda}{\mathrm{a}}=\frac{\mathrm{D} \lambda \times \mathrm{n}}{\mathrm{d}}$
$\Rightarrow \frac{2}{\mathrm{a}}=\frac{\mathrm{n}}{\mathrm{d}} \Rightarrow \mathrm{n}=\frac{2 \mathrm{~d}}{\mathrm{a}}=\frac{2 \times 6.1 \mathrm{a}}{\mathrm{a}} \simeq 12$
9. (D)

According to malus law, intensity of emerging beam is given by,

$$
\mathrm{I}=\mathrm{I}_{0} \cos ^{2} \theta
$$

Now, $\mathrm{I}_{\mathrm{A}^{\prime}}=\mathrm{I}_{\mathrm{A}} \cos ^{2} 30^{\circ}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{B}^{\prime}}=\mathrm{I}_{\mathrm{B}} \cos ^{2} 60^{\circ} \\
& \text { As }_{\mathrm{A}^{\prime}}=\mathrm{I}_{\mathrm{B}^{\prime}} \\
& \Rightarrow \mathrm{I}_{\mathrm{A}} \times \frac{3}{4}=\mathrm{I}_{\mathrm{B}} \times \frac{1}{4} ; \frac{\mathrm{I}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{B}}}=\frac{1}{3}
\end{aligned}
$$

10. (B)

11. (D)

$$
\begin{aligned}
& \begin{aligned}
& \sin \theta=\frac{0.25}{25}=\frac{1}{100} \\
& \text { Resolving power }=\frac{1.22 \lambda}{2 \mu \sin \theta} \\
&=30 \mu \mathrm{~m}
\end{aligned}
\end{aligned}
$$

12. (C)
$2 \mathrm{I}_{0}=4 \mathrm{I}_{0} \cos ^{2}\left(\frac{\Delta \phi}{2}\right)$ here, $\Delta \phi=\frac{\pi}{2}$
But, $\Delta \phi=\frac{2 \pi}{\lambda} \Delta \mathrm{x} \quad$ So, $\Delta \mathrm{x}=\frac{\lambda}{4}$
So, $Y=\frac{\Delta x D}{d}=\frac{\lambda}{4} \cdot \frac{D}{d}=\frac{\beta}{4}$
13. (A)

We know that $\Delta \theta=\frac{0.61 \lambda}{4}=\frac{l}{\mathrm{R}}$
The minimum distance between them

$$
\begin{aligned}
l & =\frac{\mathrm{R}}{9} 0.61 \times \lambda=\frac{9.46 \times 10^{15} \times 10 \times 0.61 \times 600 \times 10^{-9}}{0.3} \\
& =1.15 \times 10^{11} \mathrm{~m} \Rightarrow 1.115 \times 10^{8} \mathrm{~km} .
\end{aligned}
$$

14. (A)

Given geometrical spread $=\mathrm{a}$
Diffraction spread $=\frac{\lambda}{a} \times L=\frac{\lambda L}{a}$
The sum $b=a+\frac{\lambda L}{a}$
For b to be minimum
$\frac{\mathrm{db}}{\mathrm{da}}=0, \quad \therefore \frac{\mathrm{~d}}{\mathrm{da}}\left(\mathrm{a}+\frac{\lambda \mathrm{L}}{\mathrm{a}}\right)=0 \Rightarrow \mathrm{a}=\sqrt{\lambda \mathrm{L}}$
$b \min =\sqrt{\lambda L}+\sqrt{\lambda L}=2 \sqrt{\lambda L}=\sqrt{4 \lambda L}$
15. (D)

For common maxima, $\mathrm{n}_{1} \lambda_{1}=\mathrm{n}_{2} \lambda_{2}$
$\Rightarrow \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\lambda_{2}}{\lambda_{1}}=\frac{520 \times 10^{-9}}{650 \times 10^{-9}}=\frac{4}{5}$
For λ_{1}
$\mathrm{y}=\frac{\mathrm{n}_{1} \lambda_{1} \mathrm{D}}{\mathrm{d}}, \lambda_{1}=650 \mathrm{~nm}$
$y=\frac{4 \times 650 \times 10^{-9} \times 1.5}{0.5 \times 10^{-3}}$ or $y=7.8 \mathrm{~mm}$
16. (B)

For secondary minima,
$\mathrm{b} \sin \theta=\mathrm{n} \lambda \Rightarrow \sin \theta=\frac{\mathrm{n} \lambda}{\mathrm{b}}$
Distance of $\mathrm{n}^{\text {th }}$ secondary minima $\mathrm{x}=\mathrm{D} \sin \theta$
or $\sin \theta_{1}=\frac{x_{1}}{D} \Rightarrow \sin \theta_{1}=\frac{2 \lambda}{b}$
$\mathrm{n}=4$
$\sin \theta_{2}=\frac{4 \lambda}{b}=\frac{x_{2}}{D}$
$\mathrm{x}_{2}-\mathrm{x}_{1}=\frac{4 \lambda}{\mathrm{~b}}-\frac{2 \lambda}{2}=\frac{2 \lambda}{\mathrm{~b}}$
$3=\frac{2 \lambda}{\mathrm{~b}} \Rightarrow \mathrm{~b}=\frac{2 \lambda}{3}$
Width of central maxima $=\frac{2 \lambda}{\mathrm{~b}}=\frac{2 \lambda}{2 \lambda}=3 \mathrm{~cm} \quad \ldots$ from eq. (i)
17. (B)
$\mathrm{a}=0.1 \mathrm{~mm}=10^{-4} \mathrm{~cm}$,
$1=6000 \times 10^{-10} \mathrm{~cm}=6 \times 10^{-7} \mathrm{~cm}, \mathrm{D}=0.5 \mathrm{~m}$
for 3 rd dark band, $\operatorname{asin} \theta=3 \lambda$
or $\sin \theta=\frac{3 \lambda}{a}=\frac{x}{D}$
$\mathrm{x}=\frac{3 \lambda \mathrm{D}}{\mathrm{a}}=\frac{3 \times 6 \times 10^{-7} \times 0.5}{10^{-4}}=9 \mathrm{~mm}$
18. (A)

Angular width of central maxima $=\frac{2 \lambda}{d}$
or, $\lambda=\frac{d}{2}$; Fringe width, $\beta=\frac{\lambda \times D}{d^{\prime}}$
$10^{-2}=\frac{\mathrm{d}}{2} \times \frac{50 \times 10^{-2}}{\mathrm{~d}^{\prime}}=\frac{10^{-6} \times 50 \times 10^{-2}}{2 \times \mathrm{d}^{\prime}}$
Therefore, slit separation distance, $\mathrm{d}^{\prime}=25 \mu \mathrm{~m}$
19. (C)

Axis of transmission of $\mathrm{A} \& \mathrm{~B}$ are parallel.
Polariser A Polariser B

After introducing polariser C between A and B , Polariser $\Lambda \quad$ Polariser $\mathrm{C} \quad$ Polariser B

$\frac{\mathrm{I}}{2} \cos ^{4} \theta=\frac{\mathrm{I}}{8} \Rightarrow \cos ^{4} \theta=\frac{1}{4} \Rightarrow \cos \theta=\frac{1}{\sqrt{2}}$ or, $\theta=45^{\circ}$
20. (A)

Polariser A and B have same alignment of transmission axis.
Lets assume polariser C is introduced at θ angle
$\frac{1}{2} \cos ^{2} \theta \times \cos ^{2} \theta=\frac{1}{3} \Rightarrow \cos ^{4} \theta=\frac{2}{3} \Rightarrow \cos \theta=\left(\frac{2}{3}\right)^{1 / 4}$
21. (C)

Given amplitude ratio of waves is $\frac{a_{2}}{a_{1}}=\frac{3}{1}$
$\therefore \frac{\mathrm{I}_{\text {max }}}{\mathrm{I}_{\text {min }}}=\left(\frac{\mathrm{a}_{2}+\mathrm{a}_{1}}{\mathrm{a}_{2}-\mathrm{a}_{1}}\right)^{2}$
$=\left(\frac{\frac{a_{2}}{a_{1}}+1}{\frac{a_{2}}{a_{1}}-1}\right)^{2}=\left(\frac{3+1}{3-1}\right)^{2}=\left(\frac{4}{2}\right)^{2}=\frac{4}{1}=4$
22. (B)

As we know, $\frac{\mathrm{I}_{\text {max }}}{\mathrm{I}_{\text {min }}}=\left(\frac{\mathrm{A}_{1}+\mathrm{A}_{2}}{\mathrm{~A}_{1}-\mathrm{A}_{2}}\right)^{2}$ and $\sqrt{\frac{I_{1}}{\mathrm{I}_{2}}}=\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}$
$\frac{\mathrm{I}_{\text {max }}}{\mathrm{I}_{\text {min }}}=16 \Rightarrow \frac{\mathrm{~A}_{\text {max }}}{\mathrm{A}_{\text {min }}}=4 \Rightarrow \frac{\mathrm{~A}_{1}+\mathrm{A}_{2}}{\mathrm{~A}_{1}-\mathrm{A}_{2}}=\frac{4}{1}$
Using componendo and dividendo.
$\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{5}{3} \Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\left(\frac{5}{3}\right)^{2}=\frac{25}{9}$
23. (A)

Path difference $=\mathrm{d} \sin \theta \approx \mathrm{d} \theta$
$0.1 \times \frac{1}{40} \mathrm{~mm}=2500 \mathrm{~nm}$
For bright fringe, path difference must be integral multiple of λ.
$\therefore 2500=\mathrm{n} \lambda_{1}=\mathrm{m} \lambda_{2}$
$\therefore \lambda_{1}=625($ for $\mathrm{n}=4), \lambda_{2}=500($ for $\mathrm{m}=5)$
24. (A)

Here, $x_{1}=2 d$ and $x_{2}=\sqrt{5 d}$
For, first minima, $\Delta x=\frac{\lambda}{2}$
$\therefore \Delta \mathrm{x}=\mathrm{x}_{2}-\mathrm{x}_{1}=\sqrt{5} \mathrm{~d}-2 \mathrm{~d}=\frac{\lambda}{2} \Rightarrow \mathrm{~d}=\frac{\lambda}{2(\sqrt{5}-2)}$
25. (D)

For ' n ' number of maximas
$\mathrm{d} \sin \theta=\mathrm{n} \lambda$
$0.32 \times 10^{-3} \sin 30^{\circ}=\mathrm{n} \times 500 \times 10^{-9}$
$\therefore \mathrm{n}=\frac{0.32 \times 10^{-3}}{500 \times 10^{-9}} \times \frac{1}{2}=320$
Hence total no. of maximas observed in angular range $-30^{\circ} \leq \theta \leq 30^{\circ}$
$=320+1+320=641$
26. (A)
$\mathrm{x}=\frac{1.22 \lambda}{2 \mu \sin \theta}=\frac{1.22 \times 5000}{2 \times 1.25}=0.24 \mu \mathrm{~m}$
27. (C)
$\mathrm{I}=\left(\frac{\mathrm{I}_{0}}{2}\right) \cos ^{2} 30^{\circ} \cos ^{2} 60^{\circ}$
$=\frac{\mathrm{I}_{0}}{2} \times \frac{3}{4} \times \frac{1}{4}$
$\therefore \frac{\mathrm{I}_{0}}{\mathrm{I}}=\frac{32}{3}=10.67$

28. (C)
$\theta=\frac{1.22 \lambda}{\mathrm{~d}}=\frac{1.22 \times 600 \times 10^{-9}}{250 \times 10^{-2}}=3.0 \times 10^{-7} \mathrm{rad}$
29. (A)
$\theta=\frac{1.22 \lambda}{\mathrm{~d}}=\frac{1.22 \times 500 \times 10^{-9}}{2}=305 \times 10^{-9} \mathrm{rad}$
30. (B)

Angular width between first and second diffraction minima $\theta \simeq \frac{\lambda}{\mathrm{a}}$ and angular width of fringe due to double slit is $\theta^{\prime}=\frac{\lambda}{d}$.
So, number of fringes $=\frac{\theta}{\theta^{\prime}}=\left(\frac{\frac{\lambda}{\mathrm{a}}}{\frac{\lambda}{d}}\right)=\left(\frac{\mathrm{d}}{\mathrm{a}}\right)=\frac{19.44}{4.05}=4.81 \simeq 5$
31. (B)

According to Brewster's law, refractive index of material (μ) is equal to tangent of polarising angle
$\because \quad \tan \mathrm{i}_{\mathrm{b}}=\mu=\frac{1.5}{\mu}$
$\frac{1}{\mu}<\frac{1.5}{\sqrt{\mu^{2}+(1.5)^{2}}}\left(\because \sin \mathrm{i}_{\mathrm{c}}<\sin \mathrm{i}_{\mathrm{b}}\right) \quad \therefore \sin \mathrm{i}_{\mathrm{b}}=\frac{1.5}{\sqrt{\mu^{2}+(1.5)^{2}}}$
$\Rightarrow \sqrt{\mu^{2}+(1.5)^{2}}<1.5 \times \mu \Rightarrow \mu^{2}+(1.5)^{2}<(\mu \times 1.5)^{2}$
$\Rightarrow \mu<\frac{3}{\sqrt{5}}$ i.e. minimum value of μ should be $\frac{3}{\sqrt{5}}$
32. (D)

Initially, $S_{2} L=2 \mathrm{~m}$
$\mathrm{S}_{1} \mathrm{~L}=\sqrt{2^{2}+\left(\frac{3}{2}\right)^{2}}=\frac{5}{2} 2.5 \mathrm{~m}$
Path difference, $\Delta x=S_{1} L-S_{2} L=0.5 \mathrm{~m}=\frac{\lambda}{2}$
So we have minima here
Ar L', we have maxima
So, $\Delta x=\lambda$
$d-2=\lambda \Rightarrow d-2=1 \Rightarrow d=3 m$
33. (C)

Optical path for first ray which travels a path L_{1} through a medium of refractive index $n_{1}=n_{1} L_{1}$
Optical path for second ray which travels a path L_{2} through a medium of refractive index $n_{2}=n_{2} L_{2}$
Path difference $=\mathrm{n}_{1} \mathrm{~L}_{1}-\mathrm{n}_{2} \mathrm{~L}_{2}$
Now, phase difference
$=\frac{2 \pi}{\lambda} \times$ path difference $=\frac{2 \pi}{\lambda} \times\left(\mathrm{n}_{1} \mathrm{~L}_{1}-\mathrm{n}_{2} \mathrm{~L}_{2}\right)$
34. (B)

Given : Wavelength of light, $\lambda=500 \mathrm{~nm}$
Distance width of the fringe formed,
$\theta=\frac{\lambda}{\mathrm{d}}=\frac{500 \times 10^{-9}}{0.05 \times 10^{-3}}=0.01 \mathrm{rad}=0.57^{\circ}$
35. (A)

Path difference, $\Delta \mathrm{P}=\mathrm{d} \sin \theta=\mathrm{d} \theta$
$\mathrm{d}=$ distance between slits $=1 \mathrm{~mm}=10^{-3} \mathrm{~mm}$
$\mathrm{D}=$ distance between the slits and screen $=100 \mathrm{~cm}=1 \mathrm{~m}$
$\mathrm{y}=$ distance between central bright fringe and observed fringe $=1.27 \mathrm{~mm}$
$\therefore \Delta P=\frac{d y}{D}=\frac{10^{-3} \times 1.270 \mathrm{~mm}}{1 \mathrm{~m}}=1.27 \mathrm{~m}$
36. (D)

Let n_{1} fringes are visible with light of wavelength λ_{1} and n_{2} with light of wavelength λ_{2}. Then
$\frac{\mathrm{n}_{1} \mathrm{D} \lambda_{1}}{\mathrm{~d}}=\frac{\mathrm{n}_{2} \mathrm{D} \lambda_{2}}{\mathrm{~d}}$
$\Rightarrow \frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}=\frac{\lambda_{1}}{\lambda_{2}} \Rightarrow \mathrm{n}_{2}=\frac{700}{400} \times 16=28$
37. (A)

Fringe width, $\beta=\frac{\lambda D}{d}$ where, $\lambda=$ wavelength, $D=$ distance of screen from slits, $d=$ distance between slits ATQ
$15 \times \frac{\lambda_{1} \mathrm{D}}{\mathrm{d}}=10 \times \frac{\lambda_{2} \mathrm{D}}{\mathrm{d}} \Rightarrow 15 \lambda_{1}=10 \lambda_{2}$
$\Rightarrow \lambda_{2}=1.5 \lambda_{1} 15 \lambda_{1}=1.5 \times 500 \mathrm{~nm} \Rightarrow \lambda_{2}=750 \mathrm{~nm}$
38. (C)

Given, distance between screen and slits, $\mathrm{D}=1.5 \mathrm{~m}$
Separation between slits, $\mathrm{d}=0.15 \mathrm{~mm}$
Wavelength of source of light, $=589 \mathrm{~nm}$
Fringe-width, $w=\frac{D}{d} \lambda=\frac{15}{0.15 \times 10^{-3}} \times 589 \times 10^{-9} \mathrm{~m}$
$=589 \times 10^{-2} \mathrm{~mm}=5.89 \approx 5.9 \mathrm{~mm}$
39. (C)

Given, $\Delta=\beta$ or $\frac{D(\mu-1) t}{d}=\frac{D \lambda}{d}$
$\therefore \quad \mathrm{t}=\frac{\lambda}{(\mu-1)}$
40. (B)

Given :
Intensity, $\mathrm{I}_{0}=3.3 \mathrm{Wm}^{-2}$
Area, $\mathrm{A}=3 \times 10^{-4} \mathrm{~m}^{2}$
Angular speed, $\omega=31.4 \mathrm{rad} / \mathrm{s}$
Average energy $\mathrm{I}_{0} \mathrm{~A}<\cos ^{2} \theta>\mathrm{T}$
$\because<\cos ^{2} \theta>=\frac{1}{2}$
\therefore Average energy $=\frac{(3.3) \times\left(3 \times 10^{-4}\right)}{2} \times \frac{2 \pi}{\omega} \simeq 10^{-4} \mathrm{~J}$
41. (B)

According to question, the intensity of light coming out of the analyser is just 10% of the original intensity (I_{0})
Using, $\mathrm{I}=\mathrm{I}_{0} \cos ^{2} \theta$
$\Rightarrow \frac{\mathrm{I}_{0}}{10}=\mathrm{I}_{0} \cos ^{2} \theta \Rightarrow \frac{1}{10}=\cos ^{2} \theta$
$\Rightarrow \cos \theta=\frac{1}{\sqrt{10}}=0.316 \Rightarrow \theta \approx 71.6^{\circ}$
Therefore, the angle by which the analyser need to be rotated further to reduced the output intensity to be zero
42. (D)

Maximum intensity in interference pattern
$\mathrm{I}_{\text {max }}=\left(\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}\right)^{2}=\left(2 \sqrt{\mathrm{I}_{0}}\right)^{2}=4 \mathrm{I}_{0}$
43. (D)

Fringe width, $\beta=\frac{\lambda D}{d}$
Here, $\lambda=$ wavelength of light
$\mathrm{D}=$ Distance between sources and screen
$\mathrm{d}=$ distance between two slits
As $\lambda_{\text {blue }}<\lambda_{\text {orange }}$
So, $\beta_{\text {blue }}<\beta_{\text {orange }}$
44. (B)

Fringe width $\beta=\frac{\mathrm{D} \lambda}{\mathrm{d}}$

$$
\begin{aligned}
& \beta=\frac{D \lambda}{\left(d_{0}+\mathrm{a}_{0} \sin \omega \mathrm{t}\right)} \quad\left[\because \mathrm{d}=\mathrm{d}_{0}+\mathrm{a}_{0} \sin \omega \mathrm{t}\right] \\
& \beta_{\max }-\beta_{\min }=\frac{\mathrm{D} \lambda}{\mathrm{~d}_{0}-\mathrm{a}_{0}}-\frac{\mathrm{D} \lambda}{\mathrm{~d}_{0}+\mathrm{a}_{0}} \\
& =\mathrm{D} \lambda\left[\frac{\mathrm{~d}_{0}+\mathrm{a}_{0}-\mathrm{d}_{0}+\mathrm{a}_{0}}{\left(\mathrm{~d}_{0}+\mathrm{a}_{0}\right)\left(\mathrm{d}_{0}-\mathrm{a}_{0}\right)}\right]=\frac{2 \mathrm{a}_{0} \mathrm{D} \lambda}{\mathrm{~d}_{0}^{2}-\mathrm{a}_{0}^{2}}
\end{aligned}
$$

45. (B)

Given:
$\mathrm{d}=0.5 \mathrm{~mm}=0.5 \times 10^{-3} \mathrm{~m}$ and $\mathrm{D}=0.5 \mathrm{~m}$
Fringe width $\beta=\frac{\lambda \mathrm{D}}{\mathrm{d}}=\frac{5890 \times 10^{-10} \times 0.5}{0.5 \times 10^{-3}}=589 \times 10^{-6} \mathrm{~m}$
Hence, distance between the first and third bright fringe $=$

$$
2 \beta=2 \times 589 \times 10^{-6} \mathrm{~m}=1178 \times 10^{-6} \mathrm{~m}
$$

46. (A)

Fringe width,
$\beta=\frac{\lambda \cdot D}{d}$
Here, $\lambda=$ wavelength of light
$\mathrm{D}=$ Distance of screen from source
$\mathrm{d}=$ Distance between the slits
$\because \lambda_{R}>\lambda_{\mathrm{V}}$
As wavelength of light decreases, fringe width will decreases and fringe line will come closer.
47. (A)

Fringe width, $\beta=\frac{\lambda D}{d}$
Where D is the distance between slit and screen, d is the distance between two slits, λ is the wavelength of light.
$\therefore \beta=\frac{500 \times 10^{-9} \times 1}{2 \times 10^{-3}}=250 \times 10^{-6}=0.25 \mathrm{~mm}$
48. (D)
$\because \sin \theta=\frac{1.22 \lambda}{\mathrm{D}}$, where D is opening diameter.
When opening size diameter of the pinhole is increased, the diffraction size decreases but intensity increases.
49. (B)

We have given, $\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{1}{4} \Rightarrow \mathrm{I}_{2}=4 \mathrm{I}_{1}$
$I_{\text {max }}=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}=9 I_{1}$
$\mathrm{I}_{\text {min }}=\left(\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}\right)^{2}=\mathrm{I}_{1}$
$\therefore \frac{\mathrm{I}_{\max }+\mathrm{I}_{\min }}{\mathrm{I}_{\max }-\mathrm{I}_{\min }}=\frac{9 \mathrm{I}_{1}+\mathrm{I}_{1}}{9 \mathrm{I}_{1}-\mathrm{I}_{1}}=\frac{10}{8}=\frac{5}{4}=\frac{2 \alpha+1}{\beta+3}$

$$
\alpha=2 \quad \beta=1
$$

$\therefore \frac{\alpha}{\beta}=\frac{2}{1}=2$
50. (C)

We have $\lambda_{0}=670 \mathrm{~nm}$
$\Delta \lambda=0.7 \mathrm{~nm}$. This is case of red shift.
So, $\frac{\Delta \lambda}{\lambda}=\frac{v}{c} \Rightarrow v=c \frac{\Delta \lambda}{\lambda} \Rightarrow v=3 \times 10^{8} \times \frac{0.7}{670}$
$\Rightarrow \mathrm{v}=3.13 \times 10^{5} \mathrm{~m} / \mathrm{s}$
51. (B)
$\mathrm{I}_{\mathrm{P}+2}=\mathrm{I}+9 \mathrm{I}+2 \sqrt{\mathrm{I} .9 \mathrm{I}} \cos \frac{\pi}{2}=10 \mathrm{I}$
$\mathrm{I}_{\mathrm{Q}}=\mathrm{I}+9 \mathrm{I}+2 \sqrt{\mathrm{I} .9 \mathrm{I}} \cos \pi$
$=\mathrm{I}+9 \mathrm{I}+2.3 \mathrm{I} \times-1=4 \mathrm{I}$
So, $\mathrm{I}_{\mathrm{P}}-\mathrm{I}_{\mathrm{Q}}=10 \mathrm{I}-4 \mathrm{I}=6 \mathrm{I}$
52. (D)
$\frac{\mathrm{I}_{\max }}{\mathrm{I}_{\min }}=\frac{\left(\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}\right)^{2}}{\left(\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}\right)^{2}}=\frac{(\sqrt{9}+\sqrt{4})^{2}}{(\sqrt{9}-\sqrt{4})^{2}}=\frac{25}{1}$
53. (B)

Fringes width, $\beta=12 \mathrm{~mm}$
Refractive index of water, $\mu=\frac{4}{3}$
The fringes width is given by,

$$
\begin{equation*}
\beta=\frac{D \lambda}{d} \tag{i}
\end{equation*}
$$

Here, λ is wavelength of light.
D is distance between screen and source.
d is distance between coherent source.
If the entire arrangement is placed in water then fringes with becomes

$$
\begin{equation*}
\beta^{\prime}=\frac{D \lambda^{\prime}}{\mathrm{d}} \tag{ii}
\end{equation*}
$$

Dividing equation (ii) by (i), we have
$\Rightarrow \frac{\beta^{\prime}}{\beta}=\frac{\lambda^{\prime}}{\lambda}$
$\Rightarrow \beta^{\prime}=\frac{12 \times 3}{4} \quad\left(\because \mu=\frac{\lambda}{\lambda^{\prime}}\right)$
$\Rightarrow \quad \beta^{\prime}=9 \mathrm{~mm}$
54. (D)

Width α Amplitude ${ }^{2} \alpha$ I
So, $\frac{\mathrm{I}_{\max }}{\mathrm{I}_{\min }}=\frac{\left(\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}\right)^{2}}{\left(\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}\right)^{2}}=\frac{(\sqrt{9}+\sqrt{16})^{2}}{(\sqrt{9}-\sqrt{16})^{2}}=\frac{49}{1}$
55. (D)

As $\beta=\frac{\lambda D}{d}$
$\beta \propto \frac{\lambda}{\mathrm{d}} \Rightarrow \frac{\beta_{2}}{\beta_{1}}=\frac{\lambda_{2}}{\lambda_{1}} \times \frac{\mathrm{d}_{1}}{\mathrm{~d}_{2}}=\frac{6}{5} \times \frac{\mathrm{d}_{1}}{2 \mathrm{~d}_{1}}=\frac{3}{5}$
So, $\beta_{2}=\frac{3}{5} \beta_{1}=\frac{3}{5} \times 0.5 \mathrm{~mm}=0.3 \mathrm{~mm}$
56. (B)

Path difference at $\mathrm{O}=\mathrm{t}(\mu-1)$
If the intensity at O remains (maximum) unchanged, path difference must be $n \lambda$
So, $\mathrm{t}(\mu-1)=\mathrm{n} \lambda$
$\Rightarrow \mathrm{x} \lambda(12-1)=\mathrm{n} \lambda$
$\Rightarrow \mathrm{x}=2 \mathrm{n}$
For $\mathrm{n}=1, \mathrm{x}=2$.
57. (C)

The intensity of the light given by, $I=I_{0} \cos ^{2} \theta$
$\mathrm{I}_{1}=\frac{1}{2}\left(2 \mathrm{I}_{0}\right) \cos ^{2} \theta=\mathrm{I}_{0}$
$\mathrm{I}_{2}=\mathrm{I}_{1} \cos ^{2} 30^{\circ}=\mathrm{I}_{0} \cdot \frac{3}{4}=\frac{3 \mathrm{I}_{0}}{4}$

Hence, the intensity of the emergent light is $\frac{3 \mathrm{I}_{0}}{4}$.
58. (B)
$\mathrm{R} . \mathrm{P}=\frac{2 \sin \theta}{1.22 \lambda}$
R.P $\propto \frac{1}{\lambda} \Rightarrow(\text { R.P })_{\text {oil }}=R_{\text {air }} \times \frac{\lambda_{\text {air }}}{\lambda_{\text {oil }}}$
$\Rightarrow(\text { R.P })_{\text {oil }}=(\text { R.P })_{\text {air }} \times \frac{\mu_{\text {oil }}}{\mu_{\text {air }}}=2(\text { R.P })_{\text {air }}$
59. (C)

Resolving power is given by
R.P. $=\frac{\mathrm{d}}{1.22 \lambda}=\frac{24.4 \times 10^{-2}}{1.22 \times 2440 \times 10^{-10}}=8.2 \times 10^{5}$
60. (D)

We know that when light strike the interface of two media at Brewster's angle, then reflected light will be plane polarized with its $\overrightarrow{\mathrm{E}}$ vector vibrating in a single plane. Now, if there will be no electric field vector then there will no \vec{E}^{\prime} vibrating in reflected light. So there will be no reflected light.
61. (D)
$\frac{\text { (Maximum intensity) coherent interference }}{\text { (Maximum intensity) incohenrent interference }}=\frac{\mathrm{n}^{2} \mathrm{I}_{0}}{\mathrm{nI}_{0}}=n$
62. (9)

In young's double slit experiment, intensity at a point is given by

$$
\begin{equation*}
\mathrm{I}=\mathrm{I}_{0} \cos ^{2} \frac{\phi}{2} \tag{i}
\end{equation*}
$$

Where, $\phi=$ Phase difference,
Using phase difference, $\phi=\frac{2 \pi}{\lambda} \times$ path difference
For path difference λ, phase difference $\phi_{1}=2 \pi$
For path difference, $\frac{\lambda}{6}$, phase difference $\phi_{2}=\frac{\pi}{3}$
Using equation (i),
$\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\cos ^{2}\left(\frac{\phi_{1}}{2}\right)}{\cos ^{2}\left(\frac{\phi_{2}}{2}\right)}=\frac{\cos ^{2}\left(\frac{2 \pi}{2}\right)}{\cos ^{2}\left(\frac{\pi}{6}\right)}$
$\Rightarrow \frac{\mathrm{K}}{\mathrm{I}_{2}}=\frac{1}{\frac{3}{4}}=\frac{4}{3} \Rightarrow \mathrm{I}_{2}=\frac{3 \mathrm{~K}}{4}=\frac{9 \mathrm{~K}}{12}$
$\therefore \mathrm{n}=9$
63. (1)

We have given (w) amplitude (a) \propto slit width
Also intensity $\propto(\text { Amplitude })^{2} \propto(\text { Slit width })^{2}$
$\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}=\left(\frac{\mathrm{w}_{2}}{\mathrm{w}_{1}}\right)^{2}=\left(\frac{3 \mathrm{w}_{1}}{\mathrm{w}_{1}}\right)^{2}=\left(\frac{3}{1}\right)^{2}=9 \quad\left(\because \mathrm{w}_{2}=3 \mathrm{w}\right)$
$\Rightarrow \mathrm{I}_{2}=9 \mathrm{I}_{1}$
$\Rightarrow \frac{\mathrm{I}_{\min }}{\mathrm{I}_{\max }}=\left(\frac{\sqrt{\mathrm{I}_{2}}-\sqrt{\mathrm{I}_{1}}}{\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}}\right)^{2}=\left(\frac{3-1}{3+1}\right)^{2}=\frac{1}{4}=\frac{\mathrm{x}}{4} \Rightarrow \mathrm{x}=1.00$
64. (2)

The difference in the number of waves when yellow light propagates through air and vacuum column of the same thickness is one
So, thickness $\mathrm{t}=\mathrm{n} \lambda_{\mathrm{VBC}}=(\mathrm{n}+1) \lambda_{\text {air }}$
Or, $\mathrm{n} \lambda=(\mathrm{n}+1) \frac{\lambda}{\mu_{\text {air }}} \Rightarrow \mathrm{n}=\frac{1}{\mu_{\text {air }}-1}=\frac{10^{4}}{3}$
\therefore Thickness of air column
$\mathrm{t}=\mathrm{n} \lambda=\frac{10^{4}}{3} \times 6000 \AA=2 \mathrm{~mm}$
65. (450)

Given, $\frac{d}{2}=$ positive on $1^{\text {st }}$ dark range
$\Rightarrow \frac{\mathrm{d}}{2}=\frac{\beta}{2} \Rightarrow \mathrm{~d}=\frac{\lambda \mathrm{D}}{\mathrm{d}}$
$\Rightarrow \lambda=\frac{\mathrm{d}^{2}}{D}=\frac{\left(0.6 \times 10^{-3}\right)^{2}}{0.8}=450 \times 10^{-9} \mathrm{~m}$
66. (2)
$\mathrm{I}_{\mathrm{A}}=\mathrm{I}+4 \mathrm{I}+2 \sqrt{\mathrm{I}} \sqrt{4 \mathrm{I}} \cos \frac{\pi}{2}=5 \mathrm{I}$
and $\mathrm{I}_{\mathrm{B}}=\mathrm{I}+4 \mathrm{I}+2 \sqrt{\mathrm{I}} \sqrt{4 \mathrm{I}} \cos \frac{\pi}{3}$

$$
=5 \mathrm{I}+2 \mathrm{I}=7 \mathrm{I}
$$

67. (630)

Fringe width, $\beta=\frac{\mathrm{D}}{\mathrm{d}} \lambda \quad \therefore \beta \propto \lambda$
$\therefore \quad \lambda_{2}=\frac{8.1}{7.2} \lambda_{1}=\frac{9}{8} \lambda_{1}$
\therefore Wavelength of second light, $\lambda_{2}=\frac{9}{8} \lambda_{1}=\frac{9}{8} \times 560=630 \mathrm{~nm}$
68. (24)

We know that,
$\mathrm{I}_{\text {net }}=\mathrm{I}_{1}+\mathrm{I}_{2}+2 \sqrt{\mathrm{I}_{1}} \sqrt{\mathrm{I}_{2}} \cos \phi$
As, $I_{\text {max }}$ for $\phi=0$ and $I_{\text {min }}$ for $\phi=\pi$
$\mathrm{I}_{\text {max }}=\left(\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}\right)^{2}=(\sqrt{9 \mathrm{I}}+\sqrt{4 \mathrm{I}})^{2}=25 \mathrm{I}$
$\mathrm{I}_{\text {min }}=\left(\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}\right)^{2}=(\sqrt{9 \mathrm{I}}+\sqrt{4 \mathrm{I}})^{2}=\mathrm{I}$
So, $\mathrm{I}_{\text {max }}-\mathrm{I}_{\text {min }}=25 \mathrm{I}-\mathrm{I}=24 \mathrm{I}$

Wave optics Solutions
EXERCISE -1 (single Choir)

1. Radius of secondary wavelets in denser medium is less than that in rarer medium hence (A)
2. frequency depends on Source and hence remains Unchanged. (c)
3. All wavelengths interfere Constructively at Centre (D) for white light whereas for monochromatic light all bright fringes look alike.
4. Position of maxima on screen $y=\frac{n D \lambda}{d}$
hence $n_{1} \lambda_{R}=n_{2} \lambda_{B}, \frac{\lambda_{R}}{\lambda_{B}}=\frac{2}{3}$ hence (B)
5. lower orders of shorter wavelength interfere constructively next to central bright fringe (c)
6. fringe width is $\frac{D \lambda}{d}$, de broglie wavelength of electrons decreases with increasing voltage (B)
7. Resultant intensity

$$
I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \varphi
$$

for coherent sources with $I_{1}=I_{2}=I_{0}, I_{\text {max }}=4 I_{0}$
for incoherent Sources $\langle\cos \varphi\rangle=0, \quad I=2 I_{0}$
hance (B)
8. If I_{0} is the intensity of Each wave then for interference of two such waves $I_{\text {max }}=4 I_{0}$ (C)
9. for First minima

$$
\begin{aligned}
& d \sin \theta=\frac{\lambda}{2} \\
& d\left(\frac{\pi \theta^{\circ}}{180}\right)=\frac{\lambda}{2} \text { hence } d=\frac{180 \lambda}{2 \pi \theta^{\circ}} \text { (A) }
\end{aligned}
$$

10. Resultant intensity

$$
\begin{aligned}
& I=I_{0} \cos ^{2} \varphi / 2 \\
& \frac{3 I_{0}}{4}=I_{0} \cos ^{2} \varphi / 2 ; \cos \varphi / 2= \pm \frac{\sqrt{3}}{2} \\
& \frac{Q}{2}=n \pi \pm \frac{\pi}{6} \quad(n=0,1,2 \cdots \cdot) \\
& Q=2 n \pi \pm \frac{\pi}{3}
\end{aligned}
$$

$$
Q=\frac{2 \pi}{\lambda}(d \sin \theta) \text { where } d \sin \theta=\frac{y d}{D}
$$

$y=\frac{D \lambda}{d}\left(\frac{Q}{2 \pi}\right)$ gives positions on Seven where waves interfere with phase difference Q. for $\rho=2 n \pi \pm \frac{\pi}{3}$
$y=\frac{D \lambda}{d}\left(\frac{2 n \pm \frac{1}{3}}{2}\right)$ gives positions where intensity is $\frac{3}{4} I_{0}$. for minimum Separation choose $n=0$ orlorr$^{2} \ldots \Delta y=\frac{D \lambda}{3 d}$
11. Resultant intensity $I=I_{0} \cos ^{2} Q / 2$ for $I=\frac{I_{0}}{4}$ i.e intensity due to single slit

$$
\begin{aligned}
& \cos \theta / 2= \pm 1 / 2 \\
& \frac{Q}{2}=\left(n \pi \pm \frac{\pi}{3}\right) \text { or } Q=\left(2 n \pi \pm \frac{2 \pi}{3}\right)
\end{aligned}
$$

Positions on Screen where phase difference of interfering waves is ρ are

$$
y=\frac{D \lambda}{d}\left(\frac{Q}{2 \pi}\right)
$$

In the above Case $y=\frac{D \lambda}{d} \frac{(2 n \pm 2 / 3)}{2}$
Nearest to centre $\Rightarrow n=0$ i.e $y= \pm \frac{D \lambda}{3 d} \stackrel{(c)}{=}$
12. If $n_{1}^{\text {th }}$ bright order of λ_{1} coincides with $n_{2}^{\text {th }}$ bright order of λ_{2} then

$$
n_{1} \lambda_{1}=n_{2} \lambda_{2} \quad \frac{n_{1}}{n_{2}}=\frac{4}{5}
$$

Position of $n^{\text {th }}$ order maxima on
screen $y=\frac{n_{1} D \lambda_{1}}{d}$ or $\frac{n_{2} D \lambda_{2}}{d}$
for least distance from Centre $n_{1}=4$ or $n_{2}=5$
(13) Fringe width

$$
\begin{aligned}
\beta & =\frac{D \lambda}{d} \\
\Delta \beta & =\frac{(\Delta D) \lambda}{d} \quad \lambda=\frac{(\Delta \beta) d}{\Delta D}
\end{aligned}
$$

(14) Phase difference $\varphi=\frac{2 \pi}{\lambda} d \sin \theta$
on screen

$$
Q=\frac{2 \pi}{\lambda}\left(\frac{d y}{D}\right)
$$

for $y=\frac{1}{4} \frac{D \lambda}{d} \quad Q=\pi / 2$

$$
I=I_{0} \cos ^{2} 9 / 2 \text { hence } \frac{I_{0}}{I}=2(\mathrm{~A})
$$

(15) Phase difference of interfering waves at P $Q=\frac{2 \pi}{\lambda} \cdot\left(\frac{d y}{D}\right)$ hence as D increases Q decreases. initially at $P \quad Q=2 \pi$ and now decreases towards zero. Hence intensity decreases as Q varies from 2π to π and then intensity increases as 9 varies from π towards aero.
(16) $I=I_{0} \cos ^{2} \varphi / 2$ and $Q=\frac{2 \pi}{\lambda}\left(\frac{d x}{D}\right)$ where $x=4 \times 10^{-5} \mathrm{~m}$.
(17) Similar to solutions 10 and 11
(18) for maxima $d \sin \theta=n \lambda ; \sin \theta=\frac{n \lambda}{d}$ In the range -30° to $30^{\circ} ; \quad \begin{aligned} & -\frac{1}{2}<\sin \theta<1 / 2 \\ & -d / 2 \lambda<n<d / 2 \lambda \text { or }\end{aligned}$
19)

for white Spot PAd $=0$
or $y=d / 6$ (D)
20) At 0 , path difference $S_{1} P-S_{2} P=\frac{d^{2}}{6 D}(\because y=0)$ for maxima at 0 ; $\quad P$ th difference $=n \lambda$

$$
\text { i.e } \frac{d^{2}}{6 D}=n \lambda \text { or } \lambda=\frac{d^{2}}{6 D n} \quad[n=1,2 \ldots]
$$

hence $\frac{d^{2}}{3 D}$ in not possible (A)
21) Path difference is zero below the centre of screen hence Central maxima shifts downward and so do the other orders without Change in fringe width (D)
22) Phase difference of the interfering waves at the Centre of the seven $Q=\frac{2 \pi}{\lambda}(\mu-1) t$

$$
I=I_{0} \cos ^{2} \varphi \text {; At } \mu=1 \quad \varphi=0 \quad I=I_{0} \text { hence }(c)
$$

23. At A and C path difference of interfering waves is zero whereas at $B \& D$ path difference is $5 \mu \mathrm{~m}$ which is an odd multiple of λ. (D)
24.

At $A \& B$, Path difference of interfering waves is $3 a$
$3 a=n \lambda$ for maxima
$x=15$ Since $\lambda=\frac{a}{5}$
A \& B have $15^{\text {th }}$ order maxima Positions C \& D have zeroth order maxima. (A)
25.

At A and C Path difference is $5 a$.
hence $n=3.75$ at $A \& C$ whereas $n=0$ at $B \& D$

Evely Quadrant has maxima of order $n=1,2$ \& 3 with zero th order at $B f D$ hence. (D)
26. Fringe pattern is narrow if d is large hence to ob serve the pattern d should be decreased. (B)
27. Optical path difference at a distance " x " apart ins a medium of refractive index μ is μx. hence phase difference $g=\frac{2 \pi}{\lambda}(\mu x)$ where λ is Wavelength in air. (A)
28. Path difference at Centre of Seven 0 is $\left(\mu_{1}-1\right) t-\left(\mu_{2}-1\right) t=\left(\mu_{1}-\mu_{2}\right) t$ for maxima at 0

$$
\left(\mu_{1}-\mu_{2}\right) t=n \lambda \text { or } \lambda=\frac{1248}{n}(\mathrm{~nm})
$$

hence. (c)
29. Shift in order due to Class plates $=\left(\mu_{1}-\mu\right) t \times \frac{D}{d}$

$$
\begin{aligned}
& \text { Shift }=D \theta^{c} \\
& \left(\mu_{1}-\mu\right) t \frac{D}{d}=\not D^{\prime} \frac{\pi}{180}(6)
\end{aligned}
$$

ty $\mu_{1}=1.8$ then $\mu=1.6$ (A).
30.

Path difference at P is
optical path of (2) - optical path of (1)

$$
\begin{aligned}
p_{-} d & =\left[\left(s_{2} p-2 t\right)+\mu 2 t\right]-\left[\left(s_{1} p-t\right)+2 \mu t\right] \\
& =\left(s_{2} p-s_{1} p\right)-t
\end{aligned}
$$

for Central maxima. $p \cdot d=0$

$$
\begin{align*}
& \left(s_{2} p-s_{1} p\right)-t=0 \\
& \frac{d y}{D}=t y=\frac{D t}{d} \tag{B}
\end{align*}
$$

31. If second minima is above then phase difference should be greater than 3π and less then 6π since Third maxima is below hence (A)
32.

optical path of slement $d x$ is $\mu d x$
hence total optical path

$$
\begin{equation*}
\text { is } \int_{x=0}^{x=1} \mu d x=\frac{4}{3} m(c) \tag{c}
\end{equation*}
$$

Wave OPtics solutions
EXERCISE 11

1. frequency remains unchanged at $\frac{C}{\lambda_{a}}$ but Wavelength varies as $\frac{\lambda_{a}}{\mu}$. (A) \& (C)
2. At a point directly opposite to one of the Slits $y=d / 2$ hence path difference of the interfering waves is $\frac{d y}{D}$ or $\frac{d^{2}}{2 D}$ for destructive interference

$$
\frac{d^{2}}{2 D}=(2 n-1) \frac{\lambda}{2}
$$

or $\lambda=\frac{d^{2}}{D(2 n-1)}(n=1,2, \cdots) \quad(A) \&(C)$
3. All wavelengths interfere constructively at Centre and shorter wavelengths slightly above. (lower orders) Completely dark fringe in never formed belanse destructive interference for one wavelength may be Constructive for the other wavelengths. (B) (C) \& (D)
4. for maxima $d \sin \theta=n \lambda$ \& $\quad|\sin \theta| \leq 1$ hence $-1 \leq \frac{n \lambda}{d} \leq 1$ or $\frac{-d}{\lambda} \leq n \leq \frac{d}{\lambda}$ reducing wavelength increases the orders (B) $\&(C)$
5. Fringe width $\beta=\frac{D \lambda}{d}$ hence (B)
6. $4 y I_{1} \neq I_{2}$ then $I_{\text {in in }}=\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}$ innouzero. hence (B)
7. Introducing a glass plate increases optical path and orders shift to Compensate accordingly
(A) \& (D). Intensity at bright \& dark fringe increase.
8. At 0 , path difference is 5.5λ, an odd multiple of λ hence dark fringe appears at o Also path difference decreases with increasing " y " hence 5 maxima and 6 minima are observed on screen. (A) \& (D).
9. Every order Shifts by same length given by $\frac{(\mu-1) t D}{d}$ hance. (A) \& (C)
10. Path difference at any point at height from centre of screen in

$$
P \cdot d=\left(\mu_{2}-1\right) t_{2}-\left(\mu_{1}-1\right) t_{1}+d \sin \theta
$$

Central maxima $P \cdot d=0$

$$
\begin{aligned}
& y=\frac{D}{d}\left[\left(\mu_{2}-1\right) t_{2}+\left(\mu_{1}-1\right) t\right] \\
& y=\frac{D}{d}\left[\left(t_{2}-t_{1}\right)\right] \quad \text { hence } B \& C
\end{aligned}
$$

11.

$$
\begin{aligned}
& I_{\text {max }}=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2} \\
& I_{\text {min }}=\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2} \neq 0 \quad \text { hence }(A)
\end{aligned}
$$

12. $s s_{2}-s s_{1}=(\sqrt{2}-1) d$ hence mica shed of refractive index. $\mu=1.5$ \& thickness $2(\sqrt{2}-1) d$ is placed in front of S_{1} (A)

Path difference due to clan plate of thickness t and refractive index μ is $(\mu-1)$ t.

1. (B)

Fringe width $(\beta)=\frac{\lambda D}{d}$

$$
\beta \propto \lambda
$$

\Rightarrow As λ increases β increases
Central maxima is independent of wavelength
$\lambda_{\text {violet }}<\lambda_{\text {red }}$
$\therefore \beta_{\text {violet }}<\beta_{\text {red }}$
Hence violet maxima will be closet to central maxima
2. (ABD)

$\alpha=\frac{\beta}{D}=\frac{\lambda D}{d D}=\frac{\lambda}{d}$ independent of D.
$\beta=\frac{\lambda \mathrm{D}}{\mathrm{d}} \Rightarrow \beta \propto \mathrm{D}$
$\Delta \beta=\frac{\lambda \Delta \mathrm{D}}{\mathrm{d}}:$ dependent of λ
3. (BD)
$\theta=\frac{\beta}{D}=\frac{\lambda D}{d D}=\frac{\lambda}{d}$
As d changes, θ changes
$\beta=\frac{\lambda \mathrm{D}}{\mathrm{d}} \Rightarrow \beta \propto \frac{1}{\mathrm{~d}}$
Central maxima does not change.
All positions of minima depend on d hence they will change.
4. (A)

$5^{\text {th }}$ fringe is found at O
\therefore optical path difference
$=5 \lambda$
$\Rightarrow(1.7-1.4) \mathrm{t}=5 \lambda$
$\Rightarrow 0.3 \mathrm{t}=5 \lambda$
$\Rightarrow \mathrm{t}=\frac{5 \times 4800 \times 10^{-10}}{0.3}=8 \times 10^{-6}$
$=8 \mu \mathrm{~m}$
5. (B)

Phase difference at O is independent of d .
\because maxima is formed at O ,
Phase difference $=0$
6. (D)

Phase difference $=\frac{2 \pi}{\lambda}((1.55-1.4) \mathrm{t})$
$=\frac{2 \pi}{4800 \times 10^{-10}}\left(0.15 \times 8 \times 10^{-6}\right)$
$=5 \pi$
\Rightarrow minima is formed at O
7. (D)

Phase difference at O
$=\frac{2 \pi}{4}\left(\mu_{1} \mathrm{t}-\mu_{2} \mathrm{t}\right) \quad \ldots\left[\mathrm{t}=2 \times 10^{-6} \mu \mathrm{~m}\right]$
$\frac{2 \pi}{4800 \times 10^{-10}}(1.7-1.4) 2 \times 10^{-6}$
$=\frac{5 \pi}{2}$
$\mathrm{I}=\mathrm{I}_{0}+\mathrm{I}_{0}+2 \mathrm{I}_{0} \cos \frac{5 \pi}{2}$
$=2 \mathrm{I}_{0}$
1.

$$
\begin{aligned}
& \because \mathrm{d}=0.2 \mathrm{~cm}=2 \mathrm{~mm}, \lambda_{1}=600 \mathrm{~nm}=600 \times 10^{-9} \times 10^{3} \mathrm{~mm}=6 \times 10^{-4} \mathrm{~mm} \\
& \mu_{1}=1 \mathrm{D}=1 \mathrm{~m}=100 \mathrm{~mm}, \mu_{2}=\frac{4}{3}, \lambda_{2}=?, \beta=?
\end{aligned}
$$

$$
\therefore \mu_{1} \lambda_{1}=\mu_{2} \lambda_{2}
$$

$$
\therefore 1 \times 6 \times 10^{-4} \mathrm{~mm}=\frac{4}{3} \times \lambda_{2}: \lambda_{2}=\frac{\not \underset{18}{2}}{\not 2} \times 10^{-4} \mathrm{~mm}=\frac{9}{2} \times 10^{-4} \mathrm{~mm}
$$

$$
\therefore \beta_{2}=\frac{\lambda_{2} \times \mathrm{D}}{\lambda}=\frac{9 \times 10^{-4} \mathrm{~mm} \times 1000 \mathrm{~mm}}{2 \mathrm{~mm}}=\frac{9}{4} \times 10^{-1} \mathrm{~mm}=0.225 \mathrm{~mm}
$$

2. $\mathrm{d}_{1}=\mathrm{n}_{1} \lambda_{1} \quad \mathrm{~d}_{1}=\mathrm{n}_{2} \lambda_{2}$
$\therefore \mathrm{n}_{1} \lambda_{1}=\mathrm{n}_{2} \lambda_{2}$
$\therefore 12 \times 600=\mathrm{n}_{2} \times 400$
$\mathrm{n}_{2}=\frac{\not 22^{3} \times 6}{\not A^{\prime}}=18$
3. \quad Angular position of minima $=\frac{\lambda}{2 \mathrm{~d}}$

$$
\begin{aligned}
& \frac{\lambda}{2 \mathrm{~d}}=0.75 \times \pi / 180 \\
& \frac{180 \times 520 \times 10^{-9}}{0.75 \times 2 \times \pi} \times 1000 \\
& \mathrm{~d}=\frac{18 \times 52}{75 \times 2 \times \pi} \times 10^{-2} \mathrm{~mm} \\
& =1.98 \times 10^{-2} \mathrm{~mm}
\end{aligned}
$$

4. $\therefore \frac{9 \lambda \mathrm{D}}{\mathrm{d}}-\frac{3 \lambda \mathrm{D}}{2 \mathrm{~d}}=7.5 \mathrm{~mm}$

$$
\begin{aligned}
& \frac{15 \lambda \mathrm{D}}{2 \mathrm{~d}}=7.5 \quad(\mathrm{D}=100 \mathrm{xm} \mathrm{~d}=0.5 \mathrm{~mm} \text { given }) \\
& \lambda=500 \mathrm{~mm} \\
& =5000 \AA
\end{aligned}
$$

5. $\mathrm{d}=1 \mathrm{~mm}$
$\mathrm{D}=1 \mathrm{~m}=10^{3} \mathrm{~mm}$
$\lambda=600 \mathrm{~nm}=10^{-6} \mathrm{~nm} \times 600$
$\mathrm{k} \Delta \mathrm{x}=\phi$
...(phase diff)
$\frac{2 \pi}{\lambda} \cdot \frac{\mathrm{yd}}{\mathrm{D}}=\phi$
Now, 75% of maximum intensity $=\frac{3}{4} \times 4 \mathrm{I}_{0}$

$$
=3 \mathrm{I}_{0}
$$

$\therefore 3 \mathrm{I}_{0}=2 \mathrm{I}_{0}+2 \mathrm{I}_{0} \cos \phi$
$\therefore \cos \phi=\frac{1}{2}$
$\therefore \phi=\frac{\pi}{3}$
$\therefore \frac{2 \pi}{3} \cdot \frac{\mathrm{yd}}{\mathrm{D}}=\frac{\pi}{3}$
... (from 1)
$\therefore \mathrm{y}=\frac{\lambda . \mathrm{D}}{6 . \mathrm{d}}$
$=\frac{\left(600 \times 10^{-6}\right)\left(10^{3}\right)}{6(1)}$
$\mathrm{y}=0.1 \mathrm{~mm}$
y is distance of a point from central maxima therefore min distance between two points possible is 2. $y=2$.(0.1)
$=0.2 \mathrm{~mm}$
6. In equation position spring will compressed by $\frac{\mathrm{mg}}{\mathrm{k}}$
\therefore position of the plate from equation position at any time $\mathrm{t} . \mathrm{y}=\frac{\mathrm{mg}}{\mathrm{K}} \cos \omega \mathrm{t}$
$\therefore \mathrm{D}^{\prime}=\mathrm{D}+\frac{\mathrm{mg}}{\mathrm{k}}-\frac{\mathrm{mg}}{\mathrm{k}} \cos \omega \mathrm{t}$
$\mathrm{D}^{\prime}=\mathrm{D}+\frac{\mathrm{mg}}{\mathrm{k}}(1-\cos \omega \mathrm{t})$
$\therefore \mathrm{n}^{\text {th }}$ maxima $=\frac{\mathrm{n} \lambda \mathrm{D}^{\prime}}{\mathrm{d}}$
$=\frac{\mathrm{n} \lambda\left(\mathrm{D}+\frac{\mathrm{mg}}{\mathrm{k}}(1-\cos \omega \mathrm{t})\right)}{\mathrm{d}}$
7. $\mathrm{y}_{1}=\frac{\lambda \mathrm{D}_{1}}{\mathrm{~d}} \quad \mathrm{y}_{2}=\frac{\lambda \mathrm{D}_{2}}{\mathrm{~d}}$
$\mathrm{y}_{2}-\mathrm{y}_{1}=\frac{\lambda}{\mathrm{d}}\left(\mathrm{D}_{2}-\mathrm{D}_{1}\right)$
$3 \times 10^{-5}=\frac{\lambda}{10^{-3}} \times 5 \times 10^{-2}$
$\lambda=\frac{3}{5} \times 10^{-6}$
$=0.6 \times 10^{-6}$
$=6000 \AA$
8. Case I
$\mathrm{d} \sin \phi=\mathrm{d} \frac{\mathrm{d}}{2 \ell}$
$\Delta \mathrm{x}=\frac{\mathrm{d}^{2}}{2 \ell}+\frac{\mu \mathrm{d}^{2}}{2 \mathrm{~d}}$
$\frac{2 \pi}{\lambda}=\frac{\mathrm{d}^{2}}{2}\left(\frac{1}{\ell}+\frac{\mu}{\mathrm{D}}\right)$
$\Delta \phi=\frac{2 \pi}{\lambda} \times \Delta x=\frac{2 \pi}{\lambda} \times \frac{\mathrm{d}^{2}}{2}\left(\frac{1}{\ell}+\frac{\mu}{D}\right)$
Case II
(a) $\Delta x=\frac{d^{2}}{2}\left(\frac{\mu}{\ell}+\frac{1}{D}\right)$
(b) $\phi=\frac{\pi}{2}$

$\mathrm{d} \sin \theta=\frac{\pi}{2}$
$\frac{2 \pi}{\lambda} \frac{d y}{D}=\frac{\pi}{2}$
$\mathrm{y}=\frac{\lambda \mathrm{D}}{2 \mathrm{~d}}$

Sup sir
21. $\mathrm{D}=100 \mathrm{~cm}=\frac{1}{10} \mathrm{~m}$
$\frac{\lambda \mathrm{D}}{\mathrm{d}}=0.25 \mathrm{~mm}$
$\frac{\lambda \mathrm{D}}{\mathrm{d}+\Delta \mathrm{d}}=\frac{2}{3} \times 0.2 \mathrm{~mm}$
$\therefore \frac{\mathrm{d}+\Delta \mathrm{d}}{\mathrm{d}}=\frac{3}{2}$
$\Rightarrow \mathrm{d}=\Delta \mathrm{d}=2.4 \mathrm{~mm}$
$\therefore \lambda \mathrm{D}=0.25 \mathrm{~mm} \times 2.4 \mathrm{~mm}$
$\Rightarrow \lambda=600 \mathrm{~nm}$
Also fringe shift $(\mu-1) t \frac{d}{D}$

$$
\begin{aligned}
& \Rightarrow 20 \times(0.25 \mathrm{~mm})=(1.5-1) \times \mathrm{t} \times \frac{\mathrm{d}}{\mathrm{D}} \\
& \Rightarrow \mathrm{t}=24 \mu \mathrm{~m}
\end{aligned}
$$

24. (I) $\Delta \mathrm{x}_{\text {min }}=\theta$

$$
\Delta \mathrm{x}_{\max }=4 \lambda
$$

So number of times $\Delta x=\left(\frac{24+1}{2}\right)$
Occurs $=4+4=8$ times
$\therefore 8$ minima
(II) $\Delta \mathrm{x}_{\text {min }}=0 \quad($ at $\infty)$
$\Delta x_{\text {max }}=4 \lambda \quad(a t B)$
\therefore no. of minima $=4$
25. $\Delta \mathrm{x}=\int_{0}^{3}(\mu-1) \mathrm{dx}$
$=\int_{0}^{0} \sqrt[3]{x} . d x$
$=\frac{2}{3} \times 3 \sqrt{3}=2 \sqrt{3} \mathrm{~mm}=2 \sqrt{3} \times 10^{7} \AA$
$\Delta \phi=\frac{2 \pi}{\lambda} \times \Delta \mathrm{x}=\frac{2 \pi}{4000 \sqrt{3}} \times 2 \sqrt{3} \times 10^{7}$
$=10^{4} \pi$
\therefore constructive interference
So $\mathrm{I}=4 \mathrm{I}_{0}=4 \times 10^{-15} \mathrm{Wm}^{-2}$
26. \quad Fringe shift $=\frac{5 \lambda D}{d}$

$$
\begin{aligned}
& =\left[\left(\mu_{1}-1\right) \mathrm{t}_{1}-\left(\mu_{2}-1\right) \mathrm{t}_{2}\right] \frac{\mathrm{D}}{\mathrm{~d}} \\
& \Rightarrow|(1.7-1) \mathrm{t}-(1.4-1) \mathrm{t}|=5 \lambda
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 0.3 \mathrm{t}=5 \times 4800 \AA \\
& \Rightarrow \mathrm{t}=8 \mu \mathrm{~m}
\end{aligned}
$$

27.

$\Delta \mathrm{x}_{23}=\Delta \mathrm{x}_{12}=\mathrm{d} \Rightarrow \Delta \phi_{12}=\Delta \phi_{23}=\frac{2 \pi}{\propto} \times \Delta \mathrm{x}$
From the above phrase
$\frac{2 \pi}{\lambda} \times \Delta \mathrm{x}=\frac{2 \pi}{3} \Rightarrow \frac{2 \pi}{\lambda} \times \mathrm{d}=\frac{2 \pi}{3}$
$\Rightarrow \frac{\mathrm{d}}{\lambda}=\frac{1}{3}$

Ex-II wave optics solution. (MSP)
3) Angular position of minima $\frac{\lambda}{2 d}$

$$
\begin{aligned}
& \frac{\lambda}{2 d}=0.75 \times \pi / 180 \\
& \frac{180 \times 520 \times 10^{-9} \frac{9}{\text { main) }} \times 1000 \mathrm{~mm}}{0.75 \times 2 \times \pi}=d \\
& d=-1.98 \times 10^{-2} \mathrm{~mm} \\
& d=\frac{18 \times 52 \times 10^{-2} \mathrm{~mm}}{75 \times 2 \times \pi} \\
& =1.98 \times 10^{-2} \mathrm{~mm}
\end{aligned}
$$

4)

$$
\begin{aligned}
& \therefore \frac{g_{\lambda} D}{d}-\frac{3 \lambda D}{2 d}=7.5 \mathrm{~mm} \\
& \frac{15 \lambda D}{2 d}=7.5 \quad(D=100 \mathrm{~cm} \quad d=0.5 \mathrm{~mm}) \\
&\text { (given) }) \\
& \lambda=500 \mathrm{~mm} \\
&=5000 \AA
\end{aligned}
$$

*) In eq u position spading will be compressed by $\frac{m g}{k}$.
\therefore position of the plate from eq position at any time $t, y=\frac{m g}{k} \cos \omega t$

$$
\begin{aligned}
\therefore \quad D^{\prime} & =D+\frac{m g}{k}=\frac{m g}{k} \cos \omega t \\
D^{\prime} & =D+\frac{m g}{k}(1-\cos \omega t)
\end{aligned}
$$

$$
\begin{aligned}
\therefore n^{\text {th }} \text { maxima } & =\frac{n \lambda D^{\prime}}{d} \\
& =\frac{n \lambda\left(D+\frac{m g}{k}(1-\cos \omega t)\right)}{d}
\end{aligned}
$$

1] $d F \quad y_{1}=\frac{\lambda 1 D_{1}}{\alpha}$
$y_{2}=\frac{\lambda D_{2}}{d}$

$$
\begin{aligned}
y_{2}-y_{1} & =\frac{\lambda}{d}\left(D_{2}-D_{1}\right) \\
3 \times 10^{-5} & =\frac{\lambda}{10^{-3}} \times 5 \times 10^{-2} \\
\lambda & =\frac{3}{5} \times 10^{-6} \\
& =0.6 \times 10^{-6} \\
& =6000 \AA
\end{aligned}
$$

8

cose I] $d \sin \phi=\frac{d}{2 l}$

$$
\begin{aligned}
& \Delta x=\frac{d^{2}}{2 \lambda}+\frac{\mu_{d}}{2 d} \\
&=\frac{d^{2}}{2}\left(\frac{1}{l}+\frac{\mu}{D}\right) \quad \begin{array}{l}
b) \quad \phi=\frac{\pi}{2} \\
\Delta \phi
\end{array} \quad \frac{2 \pi}{\lambda} \frac{2 \pi}{\lambda} \times \Delta x=\frac{2 \pi}{\lambda}=\frac{2 \pi}{\lambda} \times \frac{d^{2}}{2}\left(\frac{1}{1}+\frac{4}{D}\right) \\
& y=\frac{\lambda D}{2 d}
\end{aligned}
$$

$$
\begin{align*}
& d=1 \mathrm{~mm} \\
& D=1 \mathrm{~m}=10^{3} \mathrm{~mm} \\
& \lambda=600 \mathrm{~nm}=10^{-6} \mathrm{~mm} \\
& k \Delta x=\phi \quad \ldots . \quad \text { (phase diff) } \\
& \frac{2 \pi}{\lambda} \cdot \frac{y d}{D}=\phi \quad \ldots \text { (i) } \tag{i}
\end{align*}
$$

Now, 75% of maximum itensity $=\frac{3}{4} \times 4 I_{0}$

$$
=3 I_{0}
$$

$$
\begin{aligned}
& \therefore \quad 3 I_{0}=2 I_{0}+2 I_{0} \cos \phi \\
& \therefore \quad \cos \phi=\frac{1}{2} \\
& \therefore \phi=\frac{\pi}{3} \\
& \therefore \frac{2 \pi}{\lambda} \cdot \frac{y d}{D}=\frac{\pi}{3} \cdots(\text { rom } i) \\
& \therefore y=\frac{\lambda \cdot D}{6 \cdot d} \\
&=\frac{\left(600 \times 10^{-6}\right)\left(10^{3}\right)}{6(1)} \\
& y=0.1 \mathrm{~mm}
\end{aligned}
$$

y is distame of a point from central maxima. Therefore min distance between two paints passible is it $2 \cdot y$

$$
\begin{aligned}
& =2 \cdot(0.1) \\
& =0.2 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \because d=0.2 \mathrm{~cm}=2 \mathrm{~mm}, \lambda_{1}=600 \mathrm{~nm}=600 \times 10^{-9} \times 10^{3} \mathrm{~mm}=6 \times 10^{-4} \mathrm{~mm}, \mu_{1}=1 \\
& D=1 \mathrm{~m}=1000 \mathrm{~mm}, \mu_{2}=\frac{4}{3}, \lambda_{2}=? \quad \beta_{2}=? \\
& \therefore \quad \begin{array}{l}
1
\end{array} \\
& \therefore \mu_{1}=\mu_{2} \lambda_{2} . \\
& \therefore \beta_{2}=\frac{\lambda_{2} \times D}{\alpha}=\frac{9}{2} \times 10^{-4} \mathrm{~mm}=\frac{4}{3} \times \lambda_{2} \therefore \lambda_{2}=\frac{18}{42} \times 10^{-4} \mathrm{~mm}=\frac{9}{2} \times 10^{-4} \mathrm{~mm} \\
& 2 \mathrm{~mm}
\end{aligned}
$$

Q-2].

$$
\left.\begin{array}{rl}
\Rightarrow d_{1} & =n_{1} \lambda_{1} \quad d_{1}=n_{2} \lambda_{2} \\
\therefore n_{1} \lambda_{1} & =n_{2} \lambda_{2} \\
& \therefore 12 \times 600
\end{array}\right)=n_{2} \times 400 .
$$

Only One Option Correct

1. (B)

Intensity $I=I_{0} \cos ^{2} \frac{f}{2}$ where I_{0} is the peak intensity
Here $\mathrm{I}=\frac{\mathrm{I}_{0}}{2}, \therefore \frac{\mathrm{I}_{0}}{2} \cos ^{2} \frac{\phi}{2}, \quad \therefore \phi=\frac{\pi}{2}(2 \mathrm{n}+1)$
$\therefore \phi=\frac{\pi}{2}, \frac{3}{2} \pi, \frac{5}{2} \pi \ldots$
And path difference,

$$
\Delta \mathrm{x}=\left(\frac{\lambda}{2 \pi}\right) \phi \quad \therefore \Delta \mathrm{x}=\frac{\lambda}{4}, \frac{3}{4} \lambda \ldots . . \frac{(2 \mathrm{n}+1)}{4} \lambda
$$

2. (C)

Path difference, $\Delta \mathrm{x}=\mathrm{d} \sin \alpha+\mathrm{d} \sin \theta=\mathrm{d} \alpha+\frac{\mathrm{yd}}{\mathrm{D}} \quad$ [when α and θ are small]

(A) For $\alpha=0$, path difference $\Delta x=\frac{y d}{D}$
$=\frac{0.3 \times 11}{1000}=33 \times 10^{-4} \mathrm{~mm}$
Now $\frac{\Delta \mathrm{x}}{\lambda}=\frac{33 \times 10^{-4}}{600 \times 10^{-6}}=\frac{11}{2}$
$\therefore \Delta \mathrm{x}=\frac{11}{2} \lambda \Rightarrow \Delta \mathrm{x}=(2 \mathrm{n}-1) \frac{\lambda}{2}$
Hence interference at P is destructive.
(B) Fringe width $\beta=\frac{\lambda D}{d}$ is independent of α
(C) For $\alpha=\frac{0.36}{\pi}$ degree (at point P)

$$
\Delta \mathrm{x}=\mathrm{d}\left[\alpha+\frac{\mathrm{y}}{\mathrm{~d}}\right]=0.3 \times 10^{-3}\left[\frac{0.36}{180}+\frac{11 \times 10^{-3}}{1}\right] \mathrm{m}=3900 \mathrm{~nm}
$$

Now $\frac{\Delta x}{\lambda}=\frac{3900}{600}=\frac{13}{2} \lambda$
Hence destructive interference at P .
(D) For $\alpha=\frac{0.36}{\pi}$ degree (at point O)

$$
\begin{aligned}
& \Delta \mathrm{x}=\mathrm{d} \alpha=0.3 \times 10^{-3} \times \frac{0.36}{180} \\
& =600 \times 10^{-9} \mathrm{~m}=600 \mathrm{~nm}
\end{aligned}
$$

Now $\frac{\Delta \mathrm{x}}{\lambda}=1 \Rightarrow \Delta \mathrm{x}=1 \lambda$
Hence constructive interference at O .

3. (A)

Clearly middle part of glass is diverging and upper and lower part are converting so correct shape of the emergent wavefront is as shown in the figure.

One or More than One Option Correct

1. $(\mathrm{A}, \mathrm{B}, \mathrm{C})$

We Know that fringe width, $\beta=\frac{\lambda D}{d}$
$\because \lambda_{2}>\lambda_{1} \quad \therefore \beta_{2}>\beta_{1}$
Number of fringes in a given width $\mathrm{m} \propto \frac{1}{\beta} \quad \therefore \mathrm{~m}_{1}>\mathrm{m}_{2}$
$3 \times \frac{\lambda_{2} \mathrm{D}}{\mathrm{d}}=\frac{(2 \times 5-1) \lambda_{1}}{2} \frac{\mathrm{D}}{\mathrm{d}}$
$3 \times 600=4.5 \times 400$
Angular separation $\frac{\lambda}{\mathrm{d}} \propto \lambda$
So it is greater for λ_{2}.
2. (B, C)

At P_{2},
$\Delta x=0$. So we will have maxima there.
It will be very much like central maxima in YDSE with $\mathrm{n}=0$.
So (A) is incorrect.
At P_{1}
$\Delta \mathrm{x}=\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}=\mathrm{s}=1.8 \mathrm{~mm}$
For maxima, $\Delta \mathrm{x}=\mathrm{n} \lambda$
$\mathrm{n}=\frac{\Delta \mathrm{x}}{\lambda}=\frac{1.8 \times 10^{-3}}{600 \times 10^{-9}}=\frac{1.8}{600} \times 10^{6}=3000$.
So, number of fringes between P_{1} and P_{2} will be 3000 .
$\mathrm{So},(\mathrm{C})$ is correct. And it will also be highest order fringe.
So, (B) is correct.
As, for bright fringe,

$$
\mathrm{d} \cos \theta=\mathrm{n} \lambda
$$

$\Rightarrow-\mathrm{d} \sin \theta \Delta \theta=\Delta \mathrm{n} \lambda$
$\Rightarrow \Delta \theta=-\frac{(\Delta \mathrm{n}) \lambda}{\mathrm{d} \sin \theta}$
As, we move from P_{1} to $\mathrm{P}_{2}, \theta \downarrow \downarrow$.
So $\sin \theta \downarrow \downarrow$, therefore $\Delta \theta \uparrow \uparrow$.
So, (D) is incorrect.
3. (A, B)

We have,
$\mathrm{AB}=\mathrm{d} \tan \theta$ and $\mathrm{BC}=\mathrm{AB} \sin \alpha=\mathrm{d} \tan \theta \sin \alpha$
Also, $\mathrm{AD}=\mathrm{AB} \sin \theta=\mathrm{d} \tan \theta \sin \theta$
So, optical path difference
$n_{1} B C-n_{2} A D$
$=\mathrm{n}_{1}(\mathrm{~d} \tan \theta \sin \alpha)-\mathrm{n}_{2}(\mathrm{~d} \tan \theta \sin \theta)$
$=\mathrm{d} \tan \theta\left(\mathrm{n}_{1} \sin \alpha-\mathrm{n}_{2} \sin \theta\right)=\mathrm{d} \tan \theta \times 0=0$
So, (A), (B) are correct and (C), (D) are incorrect.

Integer / Numerical Answer Type

1. (3)

For maxima, Path deference $=m \lambda$
$\therefore \quad \mathrm{S}_{2} \mathrm{~A}-\mathrm{S}_{1} \mathrm{~A}=\mathrm{m} \lambda$

$$
\begin{aligned}
& \therefore \quad(\mathrm{n}-1) \sqrt{\left(\mathrm{d}^{2}+\mathrm{x}^{2}\right)}=\mathrm{m} \lambda \\
& \therefore \quad\left(\frac{4}{3}-1\right) \sqrt{\mathrm{d}^{2}+\mathrm{x}^{2}}=\mathrm{m} \lambda \\
& \therefore \quad \sqrt{\mathrm{~d}^{2}+\mathrm{x}^{2}}=3 \mathrm{~m} \lambda \\
& \therefore \quad \mathrm{~d}^{2}+\mathrm{x}^{2}=9 \mathrm{~m}^{2} \lambda^{2} \\
& \therefore \quad \mathrm{x}^{2}=9 \mathrm{~m}^{2} \lambda^{2}-\mathrm{d}^{2}
\end{aligned}
$$

Comparing this equation with the given equation

$$
\begin{aligned}
& x^{2}=p^{2} m^{2} \lambda^{2}-d^{2}, \text { we get } \\
& p^{2}=9 \\
\therefore \quad & p=3
\end{aligned}
$$

