Answer Key \& Solution

1. (D)

By law of conservation of energy, we get

$$
(U+K)_{\text {sufface }}=(U+K)_{\text {centre }}
$$

Now, for a solid sphere, we have

$$
\begin{aligned}
& U_{\text {sufface }}=-\frac{G M m}{R} \text { and } U_{\text {centre }}=-\frac{3}{2} \frac{G M m}{R} \\
\Rightarrow & -\frac{G M m}{R}+\frac{1}{2} m(0)^{2}=-\frac{3}{2} \frac{G M m}{R}+\frac{1}{2} m v^{2} \\
\Rightarrow & \frac{1}{2} m v^{2}=-\frac{G M m}{R}-\left(-\frac{3}{2} \frac{G M m}{R}\right) \\
\Rightarrow & \frac{1}{2} m v^{2}=\frac{1}{2} \frac{G M m}{R} \\
\Rightarrow & v=\sqrt{\frac{G M}{R}}=\frac{v_{c}}{\sqrt{2}}
\end{aligned}
$$

2. (C)
$F=\int_{h}^{h+L} \frac{G\left(\frac{M}{L} d x\right) m}{x^{2}}=\frac{G M m}{L} \int_{h}^{h+L} x^{-2} d x$
$\Rightarrow \quad F=\frac{G M m}{L}\left(\left.\frac{x^{-2+1}}{-2+1}\right|_{h} ^{h+L}\right)$
$\Rightarrow \quad F=-\frac{G M m}{L}\left(\frac{1}{h+L}-\frac{1}{h}\right)$
3. (C)

By Law of Conservation of Energy, we have

$$
(U+K)_{a x i s}=(U+K)_{c}
$$

If m_{0} be the mass of the particle, then

$$
-\frac{G m m_{0}}{\sqrt{r^{2}+r^{2}}}+\frac{1}{2} m_{0}(0)^{2}=-\frac{G m m_{0}}{r}+\frac{1}{2} m_{0} \nu^{2}
$$

$\Rightarrow \quad \frac{1}{2} m_{0} v^{2}=\frac{G m m_{0}}{r}\left(1-\frac{1}{\sqrt{2}}\right)$
$\Rightarrow \quad v=\sqrt{\frac{2 G m}{r}\left(1-\frac{1}{\sqrt{2}}\right)}$
4. (C)
$d U=-\frac{G m d m}{r}$
$\Rightarrow d U=-\frac{G\left(\frac{4}{3} \pi r^{3} \rho\right)\left(4 \pi r^{2} d r \rho\right)}{r}$
$\Rightarrow d U=-\frac{16 \pi^{2} G \rho^{2}}{3} r^{4} d r$
$\Rightarrow \quad U=-\frac{16}{3} \pi^{3} G\left(\frac{M}{\frac{4}{3} \pi R^{3}}\right)^{2} \int_{0}^{R} r^{4} d r$

$\Rightarrow \quad U=\left(-\frac{16}{3} \pi^{2} G\right)\left(\frac{M^{2}}{\frac{16}{9} \pi^{2} R^{6}}\right)\left(\frac{R^{5}}{5}\right)$
$U=-\frac{3}{5} \frac{G M^{2}}{R}$
5. (D)
$L=m v r$
Also, $\frac{m v^{2}}{r}=\frac{G M m}{r^{2}}$
From equations (1) and (2), we get

$$
\begin{aligned}
& L=m \sqrt{G M r} \\
& \Rightarrow \quad L \propto r^{1 / 2}
\end{aligned}
$$

6. (AC)
$E_{g}=-\frac{d V}{d x}$
If $E_{0}=0$, then $V=$ constant and this constant may also be zero.
7. (AD)

At two positions, when the planet is closest to the sun (perigee) and when it is farthest from the sun (apogee), velocity vector is perpendicular to force vector i.e., work done is zero. In one, complete revolution work done is zero.
8. (AD)

The field inside the shell is zero and so potential inside the shell is constant equal to the value that exists at the surface i.e. $-\frac{G M}{a}$.
9. (ABCD)

By Law of Conservation of Mechanical Energy, we get

$$
\begin{align*}
& (U+K)_{\infty}=(U+K)_{r} \\
\Rightarrow & 0+0=\frac{-G m(4 m)}{r}+\frac{1}{2} \mu v_{r}^{2} \\
\Rightarrow & \frac{G(m)(4 m)}{r}=\frac{1}{2} \mu v_{r}^{2} \tag{1}
\end{align*}
$$

Where, $\mu=$ reduced mass $=\frac{(m)(4 m)}{m+4 m}=\frac{4 m}{5}$ and
$v_{r}=$ relative velocity of aaproach
Substituting (1), the total kinetic energy is

$$
\begin{aligned}
& K \\
= & =\frac{G(m)(4 m)}{r} \\
\Rightarrow \quad & K
\end{aligned}=\frac{G m^{2}}{r}
$$

Net torque of two equal and opposite forces acting on two objets is zero. Therfore, angular momentum will remain conserved. Intially both the objects were stationary i.e., angular momentum about any point was zero. Hence, angular momentum of both the particles about any point will be zero at all instants.
10. (ABD)

Kinetic energy, $K E=\frac{G M m}{2 r}$
Potential energy, $P E=-\frac{G M m}{r}$ and
The total energy, $E=-\frac{G M m}{2 r}$
Kientic energy is always positive and $K E \propto \frac{1}{r}$
Potential energy is negative and $|P E| \propto \frac{1}{r}$
Similarly total energy is also negative and $|E| \propto \frac{1}{r}$
Also, $|E|<|P E|$, so from the graph we observe that A is kinetic energy, B is potential energy and C is total energy of the satellite.
11. (ABC)

Both the stars will revolve about their centre of mass.
So, if the centre of mass be at a distance x from $2 m$, then

$$
x=\frac{2 m(0)+m r}{3 m}=\frac{r}{3}
$$

So, $r_{1}=\frac{2 r}{3}$ and $r_{2}=\frac{r}{3}$
ω and T will be same for both the stars, so

$$
\begin{aligned}
K_{1} & =\frac{1}{2} I_{1} \omega^{2} \text { and } K_{2}=\frac{1}{2} I_{2} \omega^{2} \\
\Rightarrow & \frac{K_{1}}{K_{2}}=\frac{I_{1}}{I_{2}}=\frac{m\left(\frac{2 r}{3}\right)^{2}}{2 m\left(\frac{r}{3}\right)^{2}}=2 \\
L_{1} & =I_{1} \omega \text { and } L_{2}=I_{2} \omega \\
\Rightarrow & \frac{L_{1}}{L_{2}}=\frac{I_{1}}{I_{2}}=2
\end{aligned}
$$

12. (A)

Gravitational field is the acceleration due to gravity.
So, $g=\left[\begin{array}{cc}\frac{G M}{r^{2}} & \begin{array}{c}r \geq R \\ \text { (outside) } \\ \frac{4}{3} \pi G \rho r\end{array} \\ \begin{array}{c}\text { (Inside) }\end{array}\end{array}\right.$
$\Rightarrow \frac{F_{1}}{F_{2}}=\frac{r_{2}^{2}}{r_{1}^{2}}$ (Outside)
Where $r_{1}>R$ and $r_{2}>R$ and $\frac{F_{1}}{F_{2}}=\frac{r_{1}}{r_{2}}$ (Inside)
Where $r_{1}<R$ and $r_{2}<R$
13. (AD)

$$
\begin{aligned}
& U_{i}=\frac{-G M m}{R}=U(\text { given }) \\
& \Delta U=U_{f}-U_{i}=\frac{-G M m}{(R+R)}+\frac{G M m}{R} \\
& \Rightarrow \Delta U=\frac{G M m}{2 R}=-\frac{U}{2}
\end{aligned}
$$

Same is the case with potential.
14. (ABC)

E-r and V-r graphs for a spherical shell and a solid sphere are shown here.

For a solid sphere

15. (BCD)

$$
\begin{aligned}
& T^{2}=\frac{4 \pi^{2}}{G M}\left(\frac{r_{A}+r_{P}}{2}\right)^{3} \quad\left\{\because r=\frac{r_{A}+r_{P}}{2}\right\} \\
& \Rightarrow T^{2}=\frac{\pi^{2}}{2 G M}\left(r_{A}+r_{P}\right)^{2} \mathrm{k}
\end{aligned}
$$

By Law of Conservation of Angular Momentum

$$
\begin{aligned}
& m v_{A} r_{A}=m v_{P} r_{P} \\
\Rightarrow & v_{A} r_{A}=v_{P} r_{P}
\end{aligned}
$$

16. (3.00)

Since, $g_{P}=\frac{G M_{\rho}}{R_{P}^{2}}=\frac{4}{3} G \pi R_{P} \rho_{P}$
$\Rightarrow \frac{g_{P}}{g_{e}}=\frac{R_{\mathrm{p}} \rho_{P}}{R_{e} \rho_{e}}$
Also, $v_{e}=\sqrt{2 g R}$
$\Rightarrow \frac{v_{P}}{v_{e}}=\sqrt{\frac{g_{p} R_{P}}{g_{0} R_{0}}}=\left(\frac{g_{P}}{g_{e}}\right) \sqrt{\frac{\rho_{e}}{\rho_{P}}}=\frac{\sqrt{6}}{11} \times \sqrt{\frac{3}{2}}$
$\Rightarrow \quad v_{P}=3 \mathrm{kms}^{-1}$
17.
(6.00)

$\frac{\text { Total angular momentum about } \mathrm{cm}}{\text { Angular momentum of } B \text { about } \mathrm{cm}}=\frac{L}{L_{B}}$
$\Rightarrow \frac{L}{L_{B}}=\frac{\left(2.2 M_{S}\right)\left(\omega \frac{5 d}{6}\right)\left(\frac{5 d}{6}\right)+\left(11 M_{S}\right)\left(\omega \frac{d}{6}\right)\left(\frac{d}{6}\right)}{\left(11 M_{S}\right)\left(\omega \frac{d}{6}\right)\left(\frac{d}{6}\right)}=6$
18. (7.00)

Let E be the gravitational field at x due to the complete sphere. If E_{1} be the field due to hole and E_{2} be the field due to the remaining portion, then we have

$$
\begin{align*}
& E=E_{1}+E_{2} \\
\Rightarrow & E_{2}=E-E_{1} \\
\Rightarrow & E_{2}=\frac{G M}{x^{2}}-\frac{G m}{\left(x-\frac{R}{2}\right)^{2}} \tag{1}
\end{align*}
$$

Where, $M=\frac{4}{3} \pi R^{3} \rho_{0}$ and $m=\frac{4}{3} \pi\left(\frac{R}{2}\right)^{3} \rho_{0}$
Substituting the values in equation (1), we get

$$
\begin{aligned}
E_{2} & =-\left(\frac{\pi G \rho_{0} R^{2}}{6}\right)\left[\frac{1}{\left(x-\frac{R}{2}\right)^{2}}-\frac{8}{x^{2}}\right] \\
E_{2} & =-\left(\frac{\pi G \rho_{0} R^{3}}{6}\right)\left[\frac{1}{\left(2 R-\frac{R}{2}\right)^{2}}-\frac{8}{(2 R)^{2}}\right] \\
E_{2} & =-\frac{\pi G \rho_{0} R^{3}}{6}\left(\frac{4}{9 R^{2}}-\frac{2}{R^{2}}\right) \\
E_{2} & =-\frac{\pi G \rho_{0} R}{6}\left(\frac{4-18}{9}\right) \\
\Rightarrow E_{2} & =\frac{14}{54} \pi G \rho_{0} R \\
\Rightarrow E_{2} & =\left(\frac{7}{27}\right) \pi G \rho_{0} R
\end{aligned}
$$

Since, $E=\left(\frac{a}{a+20}\right) \pi G \rho_{0} R$
$\Rightarrow \quad \frac{a}{a+20}=\frac{7}{27}$
$\Rightarrow \quad a=7$
19. (1.03)
$\frac{v_{\text {max }}}{v_{\text {min }}}=\frac{1+e}{1+e}=\left[\frac{1+0.0167}{1-0.0167}\right]=1.033$
20. (10.00)

By Law of Conservation of Enerngy, we have

$$
\begin{aligned}
& (U+K)_{\text {surface }}=(U+K)_{\mathrm{at} \infty} \\
\Rightarrow & -\frac{G m M}{R}+\frac{1}{2} m u^{2}=0+\frac{1}{2} m v^{2} \\
\Rightarrow & -\frac{2 G M}{R}+u^{2}=v^{2}
\end{aligned}
$$

Since, $v_{e}=\sqrt{\frac{2 G M}{R}}$

$$
\begin{aligned}
& \Rightarrow \quad-v_{e}^{2}+u^{2}=v^{2} \\
& \Rightarrow \quad v^{2}=-(11.2)^{2}+(15)^{2} \\
& \Rightarrow v^{2}=-125+225 \\
& \Rightarrow v=10 \mathrm{~km} \mathrm{~s}^{-1}
\end{aligned}
$$

Answer Key \& Solution

21. (A)
$\mathrm{k}_{\text {obs }}=\mathrm{k} . \mathrm{k}_{\mathrm{c}}=1.2 \times 10^{-1} \times 1.4 \times 10^{-2}=1.68 \times 10^{-6} \mathrm{~mole}^{-1} \mathrm{~L} \mathrm{~min}^{-1}$
Rate $=\mathrm{k}_{\text {obs }}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]=1.68 \times 10^{-6} \times 0.5^{2} \times 0.5$
$=2.1 \times 10^{-7} \mathrm{~mole} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
22. (A)

Catalyst affect only activation energy. It brings down the activation energy of reaction.
23. (A)
$\mathrm{A} \rightarrow 2 \mathrm{~B}+\mathrm{C}$
$\begin{array}{lll}\mathrm{P} & 0 & 0\end{array}$
P-x 2x x
At equilibrium
$180=\mathrm{P}-\mathrm{x}+2 \mathrm{x}+\mathrm{x}$
$180=90+2 x$
$2 \mathrm{x}=90, \mathrm{x}=45$
$\mathrm{K}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{P}}{\mathrm{P}-\mathrm{x}}=\frac{2.303}{10} \log \frac{90}{90-45}=\frac{2.303}{10} \log 2=\frac{0.6932}{10}$
$=0.6932=\frac{0.06932}{60}=1.1555 \times 10^{-3} \mathrm{sec}^{-1}$
24. (B)

Conceptual
25. (B)
$\mathrm{r}_{0}=\mathrm{K}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}$
$\mathrm{r}_{1}=\mathrm{K}[2 \mathrm{~A}]^{\mathrm{n}}[\mathrm{B} / 2]^{\mathrm{m}}$
$\mathrm{r}_{2}=\mathrm{K} 2^{\mathrm{n}-\mathrm{m}}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}$ or $\mathrm{r}_{1}=\mathrm{r} \times 2^{\mathrm{n}-\mathrm{m}}$
26. (C)

Radioactivity follows first order kinetics
27. (ABCD)

Conceptual
28. (A)

Conceptual
29. (C)

$$
\begin{aligned}
\mathrm{K} & =\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{C}_{0}}{\mathrm{C}} \\
& =\frac{2.303}{2 \times 10^{4}} \log \frac{800}{50} \\
& =1.38 \times 10^{-4} \mathrm{sec}^{-1}
\end{aligned}
$$

30. (A)

Two reactants leads to bimolecular reaction may be of I or II order.
31. (A)

Rate constant ' K ' is characteristic constant for a given reaction.
32. (ABD)

To increase the rate of reaction catalyst does
(i) decrease E_{a}
(ii) decreases $\mathrm{E}_{2} / \mathrm{RT}$
(iii) increases $-\mathrm{E}_{\mathrm{a}} / \mathrm{RT}$
(iv) increases $e^{-E_{a} / R T}$
(v) increases k
33. (ACD)
$-\frac{d\left[\mathrm{NH}_{3}\right]}{d t}=\frac{k_{1}\left[\mathrm{NH}_{3}\right]}{1+k_{2}\left[\mathrm{NH}_{3}\right]}=\frac{k_{1}}{\frac{1}{\left[N H_{3}\right]}+k_{2}}$
If $\left[\mathrm{NH}_{3}\right]$ is very high $\frac{1}{\left[\mathrm{NH}_{3}\right]}$ is very small than k_{2}
$\therefore \frac{-d\left[\mathrm{NH}_{3}\right]}{d t}=\frac{k_{1}}{k_{2}}$ constant
i.e. order is zero if $\left[\mathrm{NH}_{3}\right]$ is very low $\frac{1}{\left[\mathrm{NH}_{3}\right]}$ is very high than k_{2}
$\therefore \frac{-d\left[\mathrm{NH}_{3}\right]}{d t}=\frac{k_{1}}{1 /\left[\mathrm{NH}_{3}\right]} \quad \therefore \quad$ order is one.
34. (BC)
(A) It is $-\mathrm{k} / 2.303$
(B) It is of zero order
35. (ABC)
(A) $\mathrm{t}_{\mathrm{x}} \% \propto \frac{1}{\mathrm{a}}$ for second order
(B) Rate $=\mathrm{kC}_{\mathrm{t}}=\mathrm{kC}_{0} \mathrm{e}^{-\mathrm{kt}}$
$\ell \mathrm{n}\left(\frac{\mathrm{dc}}{\mathrm{dt}}\right)=\ln ($ rate $)=\ln \mathrm{kC}-\mathrm{kt} \Rightarrow \mathrm{So}$, straight line
(C) $\mathrm{k}=\mathrm{Ae}^{-\mathrm{E}_{\mathrm{a}} / R T}$

Rate $=\mathrm{k}(\text { conc. })^{\mathrm{n}}=\mathrm{Ae}^{-\mathrm{E}_{\mathrm{a}} / R T}(\text { conc. })^{\mathrm{n}}$
$\ln ($ rate $)=-\frac{E_{a}}{R T}+$ constant
Slope $=\frac{-E_{a}}{R}$
(D) $\frac{t_{0.75}}{t_{0.5}}=$ ratio of time is constant with initial conc.
36. (60)

First order reaction

$$
\begin{align*}
\mathrm{K} & =\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{a}_{0}}{\mathrm{a}_{0}-\mathrm{x}} \\
\mathrm{~K} & =\frac{2.303}{90} \log \frac{\mathrm{a}_{0}}{0.25 \mathrm{a}_{0}} \tag{1}\\
& =0.0154 \\
\mathrm{t} & =60 \%=\frac{2.303}{\mathrm{~K}} \log \frac{\mathrm{a}_{0}}{\mathrm{a}_{0}} \tag{2}\\
& =\frac{2.303}{0.0154} \times(1-0.602)=59.51 \min \approx 60
\end{align*}
$$

37. (3)

After 2 seconds surface area becomes $1 / 4$ th. Hence radius becomes $1 / 2$ of initial therefore vol will become $1 / 8$ th dissolved $\mathrm{vol}=7 / 8$
mass dissolved $=7 / 8 \times 1 / 7=1 / 8 \mathrm{gm}$
molarity $=\frac{1}{8 \times 125}=\frac{1}{1000}=10^{-3}$
38. (2)
$\mathrm{t}_{1 / 2}=20 \mathrm{~min}, \mathrm{t}^{\prime}{ }_{1 / 2}=10 \mathrm{~min} \&[\mathrm{~A}]_{0}^{\prime}=2[\mathrm{~A}]_{0}$
$\because \mathrm{t}_{1 / 2} \alpha \frac{1}{[\mathrm{~A}]_{0}^{\mathrm{n}-1}} \Rightarrow \frac{\mathrm{t}^{\prime}}{\mathrm{t}_{1 / 2}}=\left[\frac{[\mathrm{A}]_{0}^{\prime}}{[\mathrm{A}]_{0}}\right]^{\mathrm{n}-1}$
or $\frac{20}{10}=\left[\frac{2 \times[\mathrm{A}]_{0}^{\mathrm{n}-1}}{\left[\mathrm{~A}_{0}\right]}\right]^{\mathrm{n}-1} \rightarrow 2=2^{\mathrm{n}-1} \rightarrow \mathrm{n}-1=1 \Rightarrow \mathrm{n}=2$
39. (3)
$r=k[A]^{x}[B]^{y}$, write r_{1}, r_{2}, r_{3}. Divide one over another, get $x \& y$ $x+y=3$
40. (4)
$\frac{2.303}{\mathrm{k}} \log \frac{100}{100-99.99}=\frac{2.303}{\mathrm{k}} \log \frac{100}{100-90}$ or, $\log 10^{4}=\mathrm{x} \log 10 \Rightarrow \mathrm{x}=4$

SOLUTIONS

41. (A)
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P.So $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ represents a family of lines passing through the point $(1,-2)$.
So, the family of circles (concentric) will be given by $x^{2}+y^{2}-2 x+4 y+c=0$.
It interests given circle orthogonally.
$\Rightarrow 2(-1 \times-2)+(2 \times-2)=-1+c \Rightarrow c=-3$
42. (C)

$r=\sqrt{\frac{a^{2}}{4}+\frac{b^{2}}{4}}=\frac{\sqrt{a^{2}+b^{2}}}{2}$
$\sin 45^{\circ}=\frac{\sqrt{\left(h-\frac{a}{2}\right)^{2}+\left(h-\frac{b}{2}\right)^{2}}}{\frac{\sqrt{a^{2}+b^{2}}}{2}}$
$\Rightarrow \frac{1}{2}=4\left[\frac{\frac{(2 \mathrm{~h}-\mathrm{a})^{2}}{4}+\frac{(2 \mathrm{k}-\mathrm{b})^{2}}{4}}{\mathrm{a}^{2}+\mathrm{b}^{2}}\right]$
Simplify to get locus $x^{2}+y^{2}-a x-b y-\frac{a^{2}+b^{2}}{8}=0$.
43. (C)

Equation of line PQ is $y-k=\frac{-h}{k}(x-h)$

Or hx $+\mathrm{ky}=\mathrm{h}^{2}+\mathrm{k}^{2}$
\Rightarrow points $\mathrm{Q}\left(\frac{\mathrm{h}^{2}+\mathrm{k}^{2}}{\mathrm{~h}}, 0\right)$ and $\mathrm{P}\left(0, \frac{\mathrm{~h}^{2}+\mathrm{k}^{2}}{\mathrm{k}}\right)$
Also $2 \mathrm{a}=\sqrt{\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}}$
$\Rightarrow x_{1}^{2}+y_{1}^{2}=4 a^{2}$
Eliminating x_{1} and y_{1} we have
$\left(x^{2}+y^{2}\right)^{2}\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=4 a^{2}$
44. (A)

The given circle is $(x+1)^{2}=(y+2)^{2}=9$, which has Radis $=3$.
The points on the circle which are nearest and farthest to the point $\mathrm{P}(\mathrm{a}, \mathrm{b})$ are Q and R , respectively.
Thus, the circle centred at Q having radius PQ will be the smallest circle while the circle centred at R having Radis PR will be the largest required circle.
Hence, difference between their radii is $\mathrm{PR}-\mathrm{PQ}=\mathrm{QR}=6$
45. (A)

Distance of given line from the centre of the circle is $|\mathrm{p}|$.
Now the line subtends a eight angle at the centre.
Hence, radius $=\sqrt{2}|\mathrm{p}|$
$\Rightarrow \mathrm{a}=\sqrt{2}|\mathrm{p}|$
$\Rightarrow \mathrm{a}^{2}=2 \mathrm{p}^{2}$
46. (AC)

Equations of any tangent to the circle $x^{2}+y^{2}=25$ is of the form
$\mathrm{y}=\mathrm{mx}+5 \sqrt{1+\mathrm{m}^{2}}$,
[Where m is the slope]
Since, it passes through $(-2,11)$,
$11=-2 \mathrm{~m}+5 \sqrt{1+\mathrm{m}^{2}}$,
$\Rightarrow(11+2 \mathrm{~m})^{2}=25\left(1+\mathrm{m}^{2}\right)$
$\Rightarrow \mathrm{m}=\frac{24}{7},-\frac{4}{3}$
Therefore, equation of the tangents are
$24 x-7 y+125=0$
Or $4 x+3 y=25$
47. (BC)
$x^{2}+y^{2}-8 x-16 y+60=0$
Equation of chord of contact from $(-2,0)$ is
$-2 x-4(x-2)-8 y+60=0$
$\Rightarrow 3 \mathrm{x}+4 \mathrm{y}-34=0$
Solving Eqs. (1) and (2),
$x^{2}+\left(\frac{34-3 x}{4}\right)^{2}-8 x-16\left(\frac{34-3 x}{4}\right)+60=0$
$\Rightarrow 16 \mathrm{x}^{2}+1156-204 \mathrm{x}+9 \mathrm{x}^{2}-128 \mathrm{x}-2176+192 \mathrm{x}+960=0$
$\Rightarrow 5 \mathrm{x}^{2}-28 \mathrm{x}-12=0$
$\Rightarrow(\mathrm{x}-6)(5 \mathrm{x}+2)=0$
$\Rightarrow \mathrm{x}=6,-\frac{2}{5}$
\Rightarrow Point are $(6,4),\left(-\frac{2}{5}, \frac{44}{5}\right)$
48. (BD)

Line pair is $(x-1)^{2}=0$, i.e., $x+y-1=0, x-y-1=0$.
Let the centre be $(\alpha, 0)$, then its distance from $x+y=-1=0$ is

$\left|\frac{\alpha-1}{\sqrt{2}}\right|=2$ (Radius)
i.e., $\alpha=1 \pm 2 \sqrt{2}$

Centre may be $(1+2 \sqrt{2}, 0),(1-2 \sqrt{2}, 0)$.
Now let the centre be $(1, \beta)$, then
$\left|\frac{1+\beta-1}{\sqrt{2}}\right|=2$
$\Rightarrow \beta= \pm \sqrt{2}$
Centre may be $(1,2 \sqrt{2}),(1,-2 \sqrt{2})$.
49. (ACD)
$x^{2}+y^{2}+8 x-10 y-40=0$
Centre of the circle is $(-4,5)$. Its radius is 9 .
Distance of the centre $(-4,5)$ from the point $(-2,3)$ is $\sqrt{4+4}=2 \sqrt{2}$

$\therefore \mathrm{a}=2 \sqrt{2}+9$ and $\mathrm{b}=-2 \sqrt{2}+9$
$\therefore \mathrm{a}+\mathrm{b}=18$
$a-b=4 \sqrt{2}$
ab $=81-8=73$
50. (ACD)

Coordinates of O are $(5,3)$ and radius $=2$
Equation of tangent at $\mathrm{A}(7,3)$ is $7 \mathrm{x}+3 \mathrm{y}-5(\mathrm{x}+7)-3(\mathrm{y}+3)+30=0$
i.e., $2 x-14=0$,i.ex $=7$

Equation of tangent at $B(5,1)$ is $5 x+y-5(x+5)-3(y+1)+30=0$, i.e. $y=1$
Therefore, Coordinates of C are $(7,1)$
Therefore, Area of OACB is 4.
Equation of $A B$ is $x-y=4$ (radical axis)
Equation of the smallest circles is
$(x-7)(x-5)+(y-3)(y-1)=0$
i.e., $x^{2}+y^{2}-12 x-4 y+38=0$
51. (AD)

We must have $\left|\frac{\frac{c}{3}+\frac{c}{4}-1}{\sqrt{\frac{1}{3^{2}}+\frac{1}{4^{2}}}}\right|=c$
$\Rightarrow \mathrm{c}=6,1$
52. (ABCD)

Chords equidistance from the centre are equal
53. (ABCD)
$\mathrm{r}_{1}=5, \mathrm{r}_{2}=\sqrt{15}, \mathrm{C}_{1} \mathrm{C}_{2}=\sqrt{40}$
$\Rightarrow \mathrm{r}_{1}+\mathrm{r}_{2}>\mathrm{C}_{1} \mathrm{C}_{2}>\mathrm{r}_{1}-\mathrm{r}_{2}$
Hence, circles intersect in two distinct points.
There are two common tangents.

Also $2 \mathrm{~g}_{1} \mathrm{~g}_{1}+2 f_{1} f_{2}=2(1)(3)+2(2)(-4)=-10$ and $\mathrm{c}_{1}+\mathrm{c}_{2}=-20+10=-10$
Thus, two circle are orthogonal.
Length of common chord is $\frac{2 \mathrm{r}_{1} \mathrm{r}_{2}}{\sqrt{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}}}=5 \sqrt{\frac{3}{2}}$
Length of common tangent is
$\sqrt{\mathrm{C}_{1} \mathrm{C}_{2}^{2}-\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)^{2}}=5\left(\frac{12}{5}\right)^{\frac{1}{4}}$
54. (BC)

Equation of pair of tangent by $S S^{\prime}=T^{2}$ is $(a x+0-1)^{2}=\left(x^{2}+y^{2}-1\right)\left(a^{2}+0-1\right)$
Or $\left(a^{2}-1\right) y^{2}-x^{2}+2 a x-a^{2}=0$
If θ be the angle between the tangents, then

$$
\begin{aligned}
\tan \theta & \frac{2 \sqrt{\mathrm{H}^{2}-\mathrm{AB}}}{\mathrm{~A}+\mathrm{B}} \\
& =\frac{2 \sqrt{-\left(\mathrm{a}^{2}-1\right)}}{\mathrm{a}^{2}-2} \\
& \frac{2 \sqrt{\mathrm{a}^{2}-1}}{\mathrm{a}^{2}-2}
\end{aligned}
$$

If θ lies in second quadrant, then $\tan \theta<0$
$\Rightarrow \frac{2 \sqrt{a^{2}-1}}{a^{2}-2}<0$
$\Rightarrow \mathrm{a}^{2}-1>0$
And $\mathrm{a}^{2}-2<0$
$\Rightarrow|a|>1$ and $|a|<0$
$\Rightarrow \mathrm{a} \in(-\sqrt{2},-1) \cup(1, \sqrt{2})$
55. (AB)
$\mathrm{N}=81$
56. (3)

Let $\sum_{i=1}^{6} x_{1}=\alpha$ and $\sum_{i=1}^{6} y_{i}=\beta$
Let O be the orthocentre of the tringle made by $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$
$\Rightarrow O$ is $\left(x_{1}+x_{2}+x_{3}, y_{1}+y_{2}+y_{3}\right) \equiv\left(\alpha_{1}, \beta_{1}\right)$
Similarly le G be the centroid of the triangle made by other three points
$\Rightarrow G$ is $\left(\frac{x_{4}+x_{5}+x_{6}}{3}, \frac{y_{4}+y_{5}+y_{6}}{3}\right)$
$\Rightarrow G$ is $\left(\frac{\alpha-\alpha_{1}}{3}, \frac{\beta-\beta_{1}}{3}\right)$
The point dividing OG in the ratio $3: 1$ is $\left(\frac{\alpha}{4}, \frac{\beta}{4}\right) \equiv(2,1)$
$\Rightarrow \mathrm{h}+\mathrm{k}=3$

Clearly, ACP and BCQ are similar triangles.
Hence, $\frac{A C}{B C}=\frac{r_{1}}{r_{2}}$
$\frac{A C}{B C}=2$
$A C=2 B C$

Now, since B, is image of A in line
$8 x-6 y=23$
$A D=B D$
$A B=2 A D$
$A D=$ distance of A from line
$8 x-6 y=23$
$A D=\left|\frac{16-16-23}{10}\right|=\frac{5}{2}$
Now as $A C=2 B C$
$\Rightarrow A C=2(A C-A B)$
$\Rightarrow A C=2 A B$
$\Rightarrow A C=4 A D$ (from (ii))
$A C=4 \times \frac{5}{2}$
$A C=10$
58. (9)

The given circles are
$(x-1)^{2}+(y-2)^{2}=1$
And $(x-7)^{2}+(y-10)^{2}=4$

Let $A \equiv(1,2), B \equiv(7,10), r_{1}=1, r_{2}=2$.
Let $A B \equiv 10, r_{1}+r_{2}=3$
Since $A B>r_{1}+r_{2}$, the two circles are non-interesting.
Radii of the two circle at time t are $1+0.3 \mathrm{t}$ and $2+0.4 \mathrm{t}$.
For the two circles to touch each other,

$$
\begin{aligned}
& \mathrm{AB}^{2}=\left[\left(\mathrm{r}_{1}+0.3 \mathrm{t}\right) \pm\left(\mathrm{r}_{2}+0.4 \mathrm{t}\right)\right]^{2} \\
& \Rightarrow 100=[(1+0.3 \mathrm{t}) \pm(2+0.4 \mathrm{t})]^{2} \\
& \Rightarrow 100=(3+0.7 \mathrm{t})^{2},[(0.1) \mathrm{t}+1]^{2} \\
& \Rightarrow 3+0.7 \mathrm{t}= \pm 10,0.1 \mathrm{t}+1= \pm 10 \\
& \Rightarrow \mathrm{t}=10, \mathrm{t}=90 \quad(\because \mathrm{t}>0)
\end{aligned}
$$

The two circle will touch each other externally in 10 seconds and internally in 90 seconds.
59.
(6)

Since the line $\mathrm{y}=\mathrm{x}+\mathrm{c}$ is normal to the given circle, $\mathrm{c}=1$.
So the equation of line is $\mathrm{y}=\mathrm{x}+1$
Also the radius of the circle is $|\lambda|$, Given $A P=|\lambda|(\sqrt{2}-1)$
$\Rightarrow \mathrm{OP}=\sqrt{2}|\lambda|$.
$\Rightarrow \mathrm{PC}=|\lambda|$
\Rightarrow Area of quadrilateral OBPC
$=2 \times \frac{1}{2}|\lambda|^{2}=36 \Rightarrow \lambda= \pm 6$
60. (8)

$\cos \alpha=\frac{2 \sqrt{2}}{3}$
$\sin \alpha=\frac{1}{3}$
$\tan \alpha=\frac{2 \sqrt{2}}{\mathrm{R}}$
$\Rightarrow \mathrm{R}=\frac{2 \sqrt{2}}{\tan \alpha}=8$ units

