Solutions

1. (C)
$2015=5 \times 13 \times 31$, where 5,13 and 31 are prime numbers.
$\therefore 2015=1 \times 1 \times 2015 \quad$ (3 arrangements)
$=1 \times 5 \times 403 \quad(3!=6$ arrangements $)$
$=1 \times 13 \times 155 \quad(3!=6$ arrangements)
$=1 \times 31 \times 65 \quad(3!=6$ arrangements $)$
$=5 \times 13 \times 31 \quad(3!=6$ arrangements $)$
\therefore there are $\mathbf{2 7}$ possible triples (x, y, z).
2. (B)

Since the number 2, in the ratio $4: 2: 3$, is not divisible by 3 , we use the equivaletn ratio $12: 6: 9$ because 6 is divisible by 3 .
Let the area of \triangle DEF be 6 units.
Area of shaded region $=\frac{1}{3} \times 6=2$ units.
Area of trapezium $\mathrm{ABCD}=12$ units
Area of parallelogram GHJK = 9 units
Area of trapezum ABCD that is unshaded $=12-2=10$ units
Area of parallelogram GHJK that is unshaded $=9-2=7$ units
Total area of unshaded regions $=10+7=17$ units
$\therefore \quad$ ratio of area of shaded region to total area of unshaded regions $=\mathbf{2 : 1 7}$
3. (D)

If a number is divisible by $24(=3 \times 8)$, then it is also divisible by 3 and 8 , since 3 and 8 are relatively prime.
Using the divisibility test for 8 , the last three digits 56 Y is also divisible by 8 . But there are still 10 possibilities for Y.
If a number is divisible by 8 , then the number is also divisible by any factor of 8 , i.e. X 56 Y is also divisible by 2 and by 4 .
Since X 56 Y is divisible by 2 , then Y must be even, i.e. $\mathrm{Y}=0,2,4,6$ or 8 .
Since X 56 Y is divisible by 4 , using the divisibility test for 4 , the last two digits 6 Y is also divisible by 4 . Since only 62 and 66 are not divisible by 4 , then $Y=0,4$ or 8 .
Now we use the divisibility test for 8 . Since only 564 is not divisible by 8 , then $\mathrm{Y}=0$ or 8 .
Using the divisiblity test for $3, \mathrm{X}+5+6+\mathrm{Y}=\mathrm{X}+\mathrm{Y}+11$ is also divisible by 3 .
If $\mathrm{Y}=0$, then $\mathrm{X}+\mathrm{Y}+11=\mathrm{X}+11$ is also divisible by 3 , i.e. $\mathrm{X}=1,4$ or 7 .
If $Y=8$, then $X+Y+11=X+19$ is also divisible by 24 are: $\mathbf{1 5 6 0}, 4560,7560,2568,5568,8568$.
$\therefore \quad$ No. of four-digit numbers of the form X56Y that are divisible by $24=6$
4. (C)

For each pile to have a difference number of toys, and the biggest pile to have the smallest possible number of toys, put 1 toy in the $1^{\text {st }}$ pile, 2 toys in the $2^{\text {nd }}$ pile, 3 toys in the $3^{\text {rd }}$ pile, 4 toys in the $4^{\text {th }}$ pile and 5 toys in the $5^{\text {th }}$ pile. So the biggest pile is the $5^{\text {th }}$ pile, but there are only $1+2+3+4+5=$ 15 toys.
The $16^{\text {th }}$ toy will have to go to the pile so that each pile will have a different number of toys.
The $17^{\text {th }}$ toy cannot go to the 5th pile because we want to find the smallest possible number of toys in the biggest pile, so the $17^{\text {th }}$ toy will have to go to the $4^{\text {th }}$ pile. Similarly, the $18^{\text {th }}, 19^{\text {th }}$ and $20^{\text {th }}$ toys will go to the $3^{\text {rd }}, 2^{\text {nd }}$ and 1 st piles respectively.
The $21^{\text {st }}$ toy will then go to the $5^{\text {th }}$ pile again, and the $22^{\text {nd }}, 23^{\text {rd }}, 24^{\text {th }}$ and $25^{\text {th }}$ toys will go to the $4^{\text {th }}$,
$3^{\text {rd }}, 2^{\text {nd }}$ and $1^{\text {st }}$ piles respectively.
Similarly, the $26^{\text {th }}$ to $30^{\text {th }}$ toys will go to the $5^{\text {th }}$ to $1^{\text {st }}$ piles respectively.
Similarly, the $31^{\text {st }}$ to $35^{\text {th }}$ toys will also go to the $5^{\text {th }}$ to $1^{\text {st }}$ piles respectively.
\therefore the largest pile (which is the $5^{\text {th }}$ pile) will contain $5+1+1+1+1=\mathbf{9}$ toys.
5. (A)

From the identity $4 a b=(a+b)^{2}-(a-b)^{2}$, one sees that when $a+b$ is fixed, the product is the largest when $|a-b|$ is the smallest.
Now let $a<b<c$ be 3 distinct positive integers such that $a+b+c=3 n$ and the product $a b c$ is the biggest possible. If a and b differ more than 2 , then by increasing a by 1 and decreasing b by 1 , the product $a b c$ will become bigger. Hence a and b differ by at most 2 . Similarly b and c differ by at most 2 .
On the other hand, if $c=b+2=a+4$, then one can increase the value of $a b c$ by decreasing c by 1 and increasing a by 1 . So this case is ruled out.
Since $a+b+c$ is divisible by 3 , it is not possible that $c=b+1=a+3$ or $c=b+2=a+3$.
So we must have $c=b+1=a+2$. Hence the three numbers are $n-1, n$ and $n+1$. Thus, their product is $(n-1) n(n+1)=n^{3}-n$.
6. (C)

Observe that the stop numbers $1,9,25,49, \ldots$ are at the lower right corners. The point $(0,-n)$ is at the stop number $(2 n+1)^{2}-(n+1)=4 n^{2}+3 n$. When $n=22$, we have $4\left(22^{2}\right)+3(22)=2002$. So the point $(0,-22)$ is the 2002 -th stop. Thus the point $(3,-22)$ is the 2005 -th stop.
7. (A)

Observer that $((b-c)+(c-a))^{2}-4(b-c)(c-a)=0$.
Hence $((b-c)-(c-a))^{2}=0$.
Thus, $b-c=c-a$.
8. (B)

Since $m \neq n$ and $m^{2}-n^{2}=(n-m)$, we get $m+n=-1$.
Thus $m^{2}+n^{2}=(m+n)+4=3$ and $m n=\frac{1}{2}\left[(m+n)^{2}-m^{2}-n^{2}\right]=-1$.
Thus $4 m n-m^{3}-n^{3}=4 m n-(m+n)\left(m^{2}+n^{2}-m n\right)=-4-(-1)(3-(-1))=0$.
9. (B)

Since $x=200600+y-20 \sqrt{2006 y}$ is an integer, $y=2006 u^{2}$ for some positive integer u.
Similarly $x=2006 v^{2}$ for some positive integer v. Thus $u+v=10$.
There are 11 pairs in total, namely $(0,10),(1,9), \ldots . .,(10,0)$.
10. (A)

Observer that $\triangle A B D \cong \triangle E B D$. Thus, $B E=A B=4, A D=D E$.
Hence, area of $\triangle A C E=2 \times$ Area of $\triangle D C E$.

Since, $B C=3, E C=-B C=4-3=1$. Thus,
Area of $\triangle A B C=3 \times$ Area of $\triangle A C E$.
$=6 \times$ Area of $\triangle D C E$.
Thus, Area of $A B C D=$ Area of $\triangle A B C+$ Area of $\triangle A C D$

$$
\begin{aligned}
& =6 \times \text { Area of } \triangle D C E+\text { Area of } D C E \\
& =7 \times \text { Area of } \triangle D C E
\end{aligned}
$$

11. (B)

Let $A B=C D=a, A D=B C=b$ and $A X=x$.
Then triangles $A X Y$ and $B X C$ are similar.
Thus $\frac{b}{A Y}=\frac{a-x}{x}$ and $A Y=\frac{b x}{a-x}$. Now, $D Y=A Y+b=\frac{b c}{a-x}+b=\frac{a b}{a-x}$.
Also, $B X=a-x$ and hecne $B X \times D Y=a b$, the area of the rectangle $A B C D$.
12. (B)

Cubing both sides of $\sqrt[3]{x}+\sqrt[3]{y}=4$ we get

$$
x+y+12(x y)^{\frac{1}{3}}=64
$$

Putting $x+y=28$ in the above, we get $x y=27$.
Hence, x, y are roots of $t^{2}-28 t+27=0$ and $(x, y)=(1,27)$ or $(27,1)$.
13. (A)

$$
\begin{aligned}
x+\sqrt{x^{2}+\sqrt{x^{3}+1}}=1 & \Rightarrow x^{2}+\sqrt{x^{3}+1}=(1-x)^{2} \\
& \Rightarrow \sqrt{x^{3}+1}=1-2 x \\
& \Rightarrow x^{3}+1=1-4 x+4 x^{2} \\
& \Rightarrow x^{3}-4 x^{2}+4 x=0 \\
& \Rightarrow x\left(x^{2}-4 x+4\right)=0 \\
& \Rightarrow x=0,2,2
\end{aligned}
$$

When $x=2$, the given equation is not satisfied.
Hence $x=0$ is the only solution.
14. (B)

Let S denote the sum of all numbers.
The middle number is $\frac{S}{9}$. The sum of the five largest number is $5 \times 68=340$. The sum of the five smallest numbers is $5 \times 44=220$. If we add these two, we would have added the middle numbers twice.
Thus, $S+\frac{S}{9}=340+220=560$
Hence, $S=504$.
15. (D)

Let $Q R=b$. Note that the differnce between the areas A and B can be obtianed as the differnce between the area of the triangle $P Q R$ minus the area of the semi circle on $P Q$ as diameter.

Area of the semi circle $=\frac{1}{2} \times \frac{22}{7} \times 21 \times 21=693 \mathrm{~cm}^{2}$ and area of the triangle $P Q R=\frac{1}{2} \times 42 \times b=21 b$. Since $21 b-693=357$, we have $b=50 \mathrm{~cm}$.
16. (B)

Clearly $\alpha_{3}=\alpha_{6}=45^{\circ}$.
We observer $\alpha_{1}=\alpha_{2}$ and $\alpha_{4}=\alpha_{5}$.
Considering the right triangles contianing α_{1} and α_{5} we find that $\alpha_{1}+\alpha_{5}=90^{\circ}$.
Similarly, $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}=\left(\alpha_{3}+\alpha_{6}\right)+\left(\alpha_{1}+\alpha_{5}\right)+\left(\alpha_{2}+\alpha_{4}\right)$

$$
=270^{\circ}
$$

17. (C)

Let a, b, c be the uniform speeds of A, B, C respectively.

$$
\begin{align*}
& \frac{x}{a}=\frac{x-30}{b} \tag{5}\\
& \frac{x}{b}=\frac{x-20}{c} \tag{6}\\
& \frac{x}{a}=\frac{x-48}{c} \tag{7}
\end{align*}
$$

From (6) and (7), we get

$$
\begin{equation*}
\frac{a}{b}=\frac{x-20}{x-48} \tag{8}
\end{equation*}
$$

And from (5), we get

$$
\begin{equation*}
\frac{a}{b}=\frac{x}{x-30} \tag{9}
\end{equation*}
$$

Hence from (8) and (9), we get

$$
\frac{x}{x-30}=\frac{x-20}{x-48}
$$

Solving for x, we get $x=300$.
18. (B)

$$
\begin{aligned}
& \frac{a \sqrt{a}+b \sqrt{b}}{(\sqrt{a}+\sqrt{b})(a-b)}+\frac{2 \sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{a b}}{a-b} \\
& =\frac{a \sqrt{a}+b \sqrt{b}+2 \sqrt{b}(a-b)-\sqrt{a b}(\sqrt{a}-\sqrt{b})}{(\sqrt{a}+\sqrt{b})(a-b)} \\
& =\frac{a \sqrt{a}-b \sqrt{b}+a \sqrt{b}-b \sqrt{a}}{(\sqrt{a}+\sqrt{b})(a-b)} \\
& =\frac{(\sqrt{a}+\sqrt{b})(a-b)}{(\sqrt{a}+\sqrt{b})(a-b)} \\
& =1
\end{aligned}
$$

19. (A)

There are total 100 numbersm, out of which
50 numbers are divisibel by 2 ,
33 numbers are divisibel by 3 ,
20 numbers are divisibel by 5
Following are counted twice above
16 numbers are divisible by both 2 and 3
10 numbers are divisible by both 2 and 5
6 numbers are divisible by both 3 and 5
Following is counted thrice above
3 numbers are divisble by all 2,3 and 5
So total numbers divisible by 2,3 and 5 are
$=50+33+20-16-10-6+3$
$=103-29$
$=74$
So probability that a numbers is number is not divisibel by 2,3 and $5=(100-74) / 100=0.26$
20. (C)
$\angle A C D=\angle C B D$, being the angel in the alternate segemtn and $C D=D B$ sicne D is the mid point of the arc $B C$. Thus $\angle B C D=\angle D B C$. Thus $C D$ biects the angle $\angle A C B$. Similarly, $B D$ bisects the angel $\angle A B C$. Consequently, D is the inceter of the triangle $A B C$.
21. (D)

There is no way to reduce the cuts to fewer than 6: Just consider the middle cube (tha one which has no exposed surfaces int eh beginning), each of the its sides requires at least one cut.
22. (A)
$\frac{(1 \times 2 \times 3)+(2 \times 4 \times 6)+(3 \times 6 \times 9)+\ldots+(335 \times 670 \times 1005)}{(1 \times 3 \times 6)+(2 \times 6 \times 12)+(3 \times 9 \times 18)+\ldots+(335 \times 1005 \times 2010)}$
$=\frac{(1 \times 2 \times 3)\left[1^{3}+2^{3}+3^{3}+\ldots .+335^{3}\right]}{(1 \times 3 \times 6)\left[1^{3}+2^{3}+3^{3}+\ldots .+335^{3}\right]}$
$=\frac{1 \times 2 \times 3}{1 \times 3 \times 6}=\frac{1}{3}$.
23. (D)

From the given equations, we obtain

$$
\begin{aligned}
& a+b+c+d=a(r+1), a+b+c+d=b(r+1) \\
& a+b+c+d=c(r+1), a+b+c+d=d(r+1)
\end{aligned}
$$

Adding these four equations gives

$$
4(a+b+c+d)=(a+b+c+d)(r+1)
$$

that is,

$$
(3-r)(a+b+c+d)=0 .
$$

Thus $r=3$, or $a+b+c+d=0$. If $a+b+c+d=0$, then we see from the original given equaitons
that $r=-1$. Hence the value of r is either 3 or -1 .
24. (B)

Let $K=N_{2}+\ldots .+N_{2010}$. Then $X=\left(N_{1}+K\right)\left(K+N_{2011}\right)$ and $Y=\left(N_{1}+K+N_{2011}\right) K$.
$X-Y=\left(N_{1} K+K^{2}+N_{1} N_{2011}+K N_{2011}\right)-\left(N_{1} K+K^{2}+N_{2011} K\right)=N_{1} N_{2011}>0$.
25. (B)

The left shows that 3 colours are not enough. The right is a painting using 4 colours.

26. (B)

Only the last statemetn is correct: $a c^{2}<b c^{2}$ implies $c^{2}>0$, hence $a<c$. For other statemetns, counterexamples can be take as $a=-2, b=-1 ; a=0$ and $a=0$ respectively.
27. (D)

Use Inclusion and Exclusion Principle.
28. (D)

Just count: Lable the "center" O. There are 6 triangles like $\triangle A F O ; 3$ like $\triangle A O B ; 6$ like $\triangle A B D$ and 1 like $\triangle A B C$. Total: 16.
29. (C)
$x+y+z=9+\frac{S}{2}$.
So, $x=1+\frac{S}{2}, y=9-\frac{S}{2}$ and $z=-1+\frac{S}{2}$.
Since, $x, y, z \geq 0$, we have $2 \leq S \leq 18$.
30. (A)

Assume $p=\frac{a}{b}$, then $q=\frac{a+10}{b+10}$, since $b>a$, it implies $p<q$.

