MUMBAI /DELHI-NCR / PUNE / NASHIK / AKOLA/ GOA / JALGOAN/ BOKARO / AMRAVATI / DHULE

Answer Key \& Solution

1. (A)

In $\mathrm{y}=\mathrm{A} \sin \omega \mathrm{t}+\mathrm{B}$, the oscillating part is $\mathrm{A} \sin \omega \mathrm{t}$, so amplitude of motion is A .
2. (C)

Given, $\mathrm{y}_{1}=0.1 \sin (100 \pi \mathrm{t}+\pi / 3)$
And $\mathrm{y}_{2}=0.1 \sin (\pi \mathrm{t}+\pi / 2)$
So $\quad \phi=\phi_{1}-\phi_{2}=\pi / 3-\pi / 2=-\pi / 6$
3. (B)
$a=-b x$, on comparing with $a=-\omega^{2} x$
We get $\quad \omega=\sqrt{b}$.
$\therefore \quad \mathrm{T}=\frac{2 \pi}{\omega}=\frac{2 \pi}{\sqrt{\mathrm{~b}}}$
4. (C)

At $\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}}$, so time period becomes double when length becomes four times.
5. (B)

When some mercury is drained off, the centre of gravity of the bob moves down and so length of the pendulum increases, which result increase in time period.
6. (B)
$\mathrm{g}=\frac{\mathrm{GM}}{\mathrm{R}^{2}}$. On the planet $\mathrm{g}^{\prime}=\frac{\mathrm{G}(2 \mathrm{M})}{(2 \mathrm{R})^{2}}=\frac{\mathrm{g}}{2}$.
$\mathrm{T}=2 \pi \sqrt{\ell / \mathrm{g}}$ and $\mathrm{T}^{\prime}=2 \pi \sqrt{\ell /(\mathrm{g} / 2)}=\sqrt{2} \mathrm{~T}$
$=\sqrt{2} \times 2=2 \sqrt{2}$.
7. (C)
$\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}}$,
$\mathrm{T}^{\prime}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}+\mathrm{a}}}=2 \pi \sqrt{\frac{\ell}{\left(\mathrm{~g}+\frac{\mathrm{g}}{4}\right)}}=\frac{2}{\sqrt{5}} \mathrm{~T}$.
8. (D)

$$
\omega_{1} \mathrm{~A}_{1}=\omega_{2} \mathrm{~A}_{2}
$$

Or $\quad \sqrt{\frac{k_{1}}{m}} A_{1}=\sqrt{\frac{k_{2}}{m}} A_{2}$
Or $\quad \frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\sqrt{\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}}$.
9. (A)
$\mathrm{T}_{1}=\frac{\mathrm{T}}{12}$ and $\mathrm{T}_{2}=\frac{\mathrm{T}}{6}$
Clearly $\quad \mathrm{T}_{2}=2 \mathrm{~T}_{1}$
10. (A)
$\mathrm{x}=\sin \omega \mathrm{t}-\cos \omega \mathrm{t}$
$\therefore \quad \frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}=-\omega^{2}(\sin \omega \mathrm{t}-\cos \omega \mathrm{t})$
$=\quad-\omega^{2} \mathrm{x}$. So it represents SHM.
11. (B)

The equivalent system is shown in figure.

The equivalent force constant of which

$$
\begin{array}{ll}
& \mathrm{k}_{\mathrm{e}}=\mathrm{k}+3 \mathrm{k}=4 \mathrm{k} \\
\therefore & \omega=\sqrt{\frac{\mathrm{k}_{\mathrm{e}}}{\mathrm{~m}}}=\sqrt{\frac{4 \mathrm{k}}{\mathrm{~m}}}=2 \sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \\
\text { And } & \mathrm{f}=\frac{\omega}{2 \pi}=\frac{2}{2 \pi} \sqrt{\frac{\mathrm{k}}{\mathrm{~m}}}=\frac{1}{\pi} \sqrt{\frac{\mathrm{k}}{\mathrm{~m}} .}
\end{array}
$$

12. (A)

$$
\begin{aligned}
a_{\text {net }}= & \sqrt{g^{2}+(g \sin \alpha)^{2}+2 g(g \sin \alpha) \cos \left(90^{\circ}+\alpha\right)} \\
& =g \cos \alpha
\end{aligned}
$$

$\therefore \quad \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~L}}{\mathrm{~g} \cos \alpha}}$
13. (D)

The half of the oscillation is completed with one spring and other half oscillation with two springs and so
$\mathrm{T}^{\prime}=\left[\frac{\mathrm{T}}{2}\right]_{\text {onespring }}+\left[\frac{\mathrm{T}}{2}\right]_{\mathrm{Two} \text { springs in parallel }}$
$=\pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}}}+\pi \sqrt{\frac{\mathrm{m}}{2 \mathrm{k}}}$
14. (D)

Shows the plot of $U(x)$ versus x. At $x=0$, potential energy $U(0)=k[1-\exp (0)]=k(1-1)=0$ and it has a maximum value $=\mathrm{k}$ at $\mathrm{x}= \pm \infty$ since

$$
\mathrm{U}(\pm \infty)=\mathrm{k}\left[1-\exp (- \pm \infty)^{2}\right]=\mathrm{k}(1-0)=\mathrm{k}
$$

Since the total mechanical energy has a constant value $=(k / 2)$, the kinetic energy will be maximum at $\mathrm{x}=0$ and minimum at $\mathrm{x}= \pm \infty$. At $\mathrm{x}=0$

$$
\left(\frac{\mathrm{d} U}{\mathrm{dx}}\right)_{\mathrm{x}=0}=\left[2 \mathrm{kx} \exp \left(-\mathrm{x}^{2}\right)\right]_{\mathrm{atx}=0}=0
$$

Hence the particle is in stable equilibrium at $\mathrm{x}=0$ (origin) and would oscillate abut $\mathrm{x}=0$ (for small displacements) simple harmonically. Hence (D) is the only correct choice.
15. (C)

The reduced mass of the system

$$
\mu=\frac{\mathrm{mm}}{\mathrm{~m}+\mathrm{m}}=\frac{\mathrm{m}}{2}
$$

And $\quad \mathrm{k}_{\mathrm{e}}=\frac{\mathrm{k} \times 2 \mathrm{k}}{\mathrm{k}+2 \mathrm{k}}=\frac{2 \mathrm{k}}{3}$
Time period $T=2 \pi \sqrt{\frac{\mu}{k_{e}}}=2 \pi \sqrt{\frac{\mathrm{~m} / 2}{2 \mathrm{k} / 3}}=2 \pi \sqrt{\frac{3 \mathrm{~m}}{4 \mathrm{k}}}$

We can write

$$
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}+\frac{9}{4} \mathrm{y}=0
$$

On comparing with $a=-\omega^{2} y$, we get

$$
\omega=\frac{3}{2} .
$$

17. (C)

Given, $\mathrm{x}=3 \sin \pi \mathrm{t}+4 \cos \omega \mathrm{t}$
The general equation of SHM can be written as

$$
\mathrm{x}=\mathrm{A} \sin (\omega \mathrm{t}+\phi)
$$

Or $\quad \mathrm{x}=\mathrm{A} \sin \omega \mathrm{t} \cos \phi+\mathrm{A} \cos \omega t \sin \phi$
On comparing two equations, we get
$\mathrm{A} \sin \phi=4$ and $\mathrm{A} \cos \phi=3$
So, $\quad \mathrm{x}=5 \sin (\pi \mathrm{t}+\phi)$
Also $\omega=\pi$
Or $\quad \mathrm{f}=\frac{\omega}{2 \pi}=\frac{\pi}{2 \pi}=\frac{1}{2} \mathrm{~Hz}$.
18. (B)

Given, $1=\mathrm{A} \cos \left(\omega \mathrm{x}_{0}+\theta\right)$
Or $\quad \mathrm{A} \cos \theta=1$
Also velocity $\mathrm{v}=\omega \mathrm{A} \sin (\omega \mathrm{t}+\theta)$
Or $\quad \pi=\pi \mathrm{A} \sin (\omega \times 0+\theta)$
Or $\quad \mathrm{A} \sin \theta=1$
Squaring equations (i) and (ii) and adding, we get

$$
A=\sqrt{2}
$$

19. (A)

When m_{1} is removed, the unbalanced upward force is $=\mathrm{m}_{1} \mathrm{~g}$.
So amplitude of motion $=\frac{m_{1} g}{k}$.
20. (B)

The restoring torque (for small displacement),
$\tau_{\text {rest }}=-\operatorname{mg}(R \theta)$

$\therefore \quad \alpha=\frac{\tau_{\text {rest }}}{1}=\frac{\mathrm{mgR}}{2 \mathrm{mR}^{2}}(-\theta)=\frac{\mathrm{g}}{2 \mathrm{R}}$
$\therefore \quad \mathrm{T}=2 \pi \sqrt{\frac{2 \mathrm{R}}{\mathrm{g}}}$
The length of equivalent pendulum

$$
\ell=2 \mathrm{R} .
$$

21. (4)

Time taken by particle to travel from mean position to given position $=4-2=2 \mathrm{sec}$.

$$
\begin{aligned}
& \mathrm{x}=\mathrm{A} \sin \omega \mathrm{t} \\
& =\mathrm{A} \sin \frac{2 \pi}{16} \times 2 \\
& =\frac{\mathrm{A}}{\sqrt{2}} \\
\therefore \quad \mathrm{~V} & =\omega \sqrt{\mathrm{A}^{2}-\mathrm{x}^{2}} \\
& =\frac{\omega \mathrm{A}}{\sqrt{2}}=\frac{2 \pi}{16} \times \frac{32 \sqrt{2}}{\pi} \times \frac{1}{\sqrt{2}}=4 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

22. (5)
$K E=\frac{1}{2} m \omega^{2} \mathrm{~A}^{2}$
$\Rightarrow \quad 18=\frac{1}{2} \times 1 \times \omega^{2} \times 36 \times 10^{-4}$
$\Rightarrow \quad \omega=\sqrt{10000}$
$=100 \mathrm{rad} / \mathrm{s}$
23. (2)
$\mathrm{T}=\frac{2 \pi}{\omega}=\frac{2 \pi}{\pi}=2 \mathrm{sec}$.
In 2.5 sec , it completes $\frac{5}{4}$ oscillation
Total distance $4 \mathrm{a}+\mathrm{a}$

$$
=5 \mathrm{a}
$$

24. (0)

During one line period, change in velocity becomes zero.
\therefore Average acceleration is zero.
25. (4)

Time period of simple pendulum is independent of amplutide.
26. (1)

$$
\begin{aligned}
& \mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}} \\
& \Rightarrow 2=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}} \\
& \Rightarrow 1=\pi^{2} \cdot \frac{\ell}{\mathrm{~g}} \Rightarrow \ell=1 \mathrm{~m}
\end{aligned}
$$

27. (2)

$$
\begin{align*}
& \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} \\
& \Rightarrow 8=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} \tag{1}
\end{align*}
$$

\&, $\quad \mathrm{T}^{1}=2 \pi \sqrt{\frac{\mathrm{~m}}{4 \mathrm{k}}}$

$$
=\frac{2 \pi}{2} \cdot \sqrt{\frac{\mathrm{~m}}{4 \mathrm{k}}}
$$

$$
=\frac{8}{2} \quad(\text { from }(1))
$$

$$
=4 \mathrm{sec}
$$

28.

(27)
$\frac{\mathrm{KE}}{\mathrm{PE}}=\frac{\frac{1}{2} \mathrm{~m} \cdot \omega^{2}\left(\mathrm{~A}^{2}-\frac{\mathrm{A}^{2}}{4}\right)}{\frac{1}{2} \mathrm{~m} \omega^{2} \mathrm{~A}^{2} / 4}=\frac{3}{1}$
$\therefore \quad \mathrm{n}=27$
29. (4)

$$
\mathrm{F}=\frac{-\mathrm{dU}}{\mathrm{dx}}
$$

$$
\Rightarrow \mathrm{F}=-2(\mathrm{x}-4)
$$

At mean position $\mathrm{F}=0$

$$
\begin{aligned}
& \Rightarrow x-4=0 \\
& \Rightarrow x=4 m
\end{aligned}
$$

Total mechanical energy is constant.

MUMBAI /DELHI-NCR / PUNE / NASHIK/ AKOLA/ GOA / JALGOAN / BOKARO / AMRAVATI / DHULE

Answer Key \& Solution

31. (D)

In disproportionation reaction, same element undergoes oxidation as well as reduction e.g

Here, CuBr get oxidised to CuBr_{2} and also it get reduced to Cu . Other given reactions and their types are given below.

In the given reaction, MnO_{4}^{-}get oxidised to Mn^{2+} and I^{-}get reduced to I_{2}. It is an example of redox reaction. The reaction takes place in acidic medium.
$2 \mathrm{KMnO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}$
The given reaction is an example of decomposition reaction. Here, one compound split into two or more simpler compounds atleast one of which must be elemental form.
$2 \mathrm{NaBr}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{NaCl}+\mathrm{Br}_{2}$
The given reaction is an example of displacement reaction. In this reaction, an atom (or ion) replaces the ion (or atom) of another element from a compound.
32. (B)

The graph that shows the correct change of pH of the titration mixture in the experiment is

In this case, both the titrants are completely ionized
$\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
As H^{+}is added to a basic solution $\left[\mathrm{OH}^{+}\right]$decreases and $\left[\mathrm{H}^{+}\right]$increases. Therefore pH goes on decreasing. As the equivalence point to reached $\left[\mathrm{OH}^{+}\right]$is rapidly reduced. After this point $\left[\mathrm{OH}^{+}\right]$ decreases rapidly and pH of the solution remains fairly constant. Thus, there is an inflexion point at the equivalence point.
The difference in the volume of NaOH solution between the end point and the equivalence point is not significant for most of the commonly used indicators as there is a large change in the pH value around the equivalence point. Most of them change their colour across this pH change.
33. (A)

The oxidation of a mixture of one mole of each of $\mathrm{FeC}_{2} \mathrm{O}_{4}, \mathrm{Fe}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3} \mathrm{FeSO}_{4}$ and
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ in acidic medium with KMnO_{4} is as follows:
$\mathrm{FeC}_{2} \mathrm{O}_{4}+\mathrm{KMnO}_{4} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}+\mathrm{Mn}^{2+}$
$\mathrm{Fe}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}+\mathrm{KMnO}_{4} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}+\mathrm{Mn}^{2+}$
$\mathrm{FeSO}_{4}+\mathrm{KMnO}_{4} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{SO}_{4}^{2-}+\mathrm{Mn}^{2+}$
Change in oxidation number of Mn is 5 . Change in oxidation number of Fe in (i), (ii) and (iii) are $+3,+6,+1$, respectively.
$\mathrm{n}_{\text {eq }} \mathrm{KMnO}_{4}=\mathrm{n}_{\text {eq }}\left[\mathrm{FeC}_{2} \mathrm{O}_{4}+\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}+\mathrm{FeSO}_{4}\right]$
$\mathrm{n} \times 5=1 \times 3+1 \times 6+1 \times 1$
$\therefore \mathrm{n}=2$
34. (D)

Given, $\mathrm{W}_{\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}}=0.81 \mathrm{~g}$
$\mathrm{W}_{\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}}=0.73 \mathrm{~g}$
$\mathrm{M}_{\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}}=162 \mathrm{~g} \mathrm{~mol}^{-1}$,
$\mathrm{M}_{\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}}=146 \mathrm{~mol}^{-1}$
$\mathrm{V}_{\mathrm{H}_{2} \mathrm{O}}=100 \mathrm{~mL}$
Now, $\mathrm{n}_{\mathrm{eq}}\left(\mathrm{CaCO}_{3}\right)=\mathrm{n}_{\mathrm{eq}}\left[\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}\right]+\mathrm{n}_{\mathrm{eq}}\left[\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}\right]$
$\frac{\mathrm{W}}{100} \times 2=\frac{0.81}{162} \times 2+\frac{0.73}{146} \times 2$
$\therefore \frac{\mathrm{W}}{100}=0.005+0.005$
$\mathrm{W}=0.01 \times 100=1$
Thus, hardness of water sample $=\frac{1}{100} \times 10^{6}=10,000 \mathrm{ppm}$
35. (A)

The reaction tales place as follows,
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

Now, 50 mL of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is needed to neutralize 25 mL of NaOH
\therefore Meq of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=$ Meq of NaOH
$50 \times 0.5 \times 2=25 \times \mathrm{M}_{\mathrm{NaOH}} \times 1$
$\mathrm{M}_{\mathrm{NaOH}}=2 \mathrm{M}$
Now, molarity $=\frac{\text { Number of moles }}{\text { Volume of solution(inL) }}$
$=\frac{\text { Weight } / \text { molecular mass }}{\text { Volume of solution (inL) }}$
$2=\frac{\mathrm{w}_{\mathrm{NaOH}}}{40} \times \frac{1000}{50}$
$\mathrm{w}_{\mathrm{NaOH}}=\frac{2 \times 40 \times 50}{1000}=4 \mathrm{~g}$
36. (C)

The reaction of HCl with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is as follows:
$2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
We know that, $\mathrm{M}_{\text {eq }}$ of $\mathrm{HCl}=\mathrm{M}_{\text {eq }}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
$\frac{25}{1000} \times 1 \times \mathrm{M}_{\mathrm{HCl}}=\frac{30}{1000} \times 0.1 \times 2$
$\mathrm{M}_{\mathrm{HCl}}=\frac{30 \times 0.2}{25}=\frac{6}{25} \mathrm{M}$
The reaction of HCl with NaOH is as follows:
$\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
Also, M_{eq} of $\mathrm{HCl}=\mathrm{M}_{\mathrm{eq}}$ of NaOH
$\frac{6}{25} \times 1 \times \frac{\mathrm{V}}{1000}=\frac{30}{1000} \times 0.2 \times 1$
$\mathrm{V}=25 \mathrm{~mL}$
37. (C)

Reaction of oxalate with permanganate in acidic medium

$$
5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+2 \mathrm{MnO}_{4}^{-} \longrightarrow 10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}
$$

n -factor:

$$
(4-3) \times 2=2
$$

$$
(7-2)=5
$$

Number of moles 5
$\Rightarrow 5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ ions transfer $10 \mathrm{e}^{-}$to produce 10 molecules of CO_{2}. So, number of electrons involved in producing 10 molecules of CO_{2} is 10 . Thus, number of electrons involved in producing 1 molecule of CO_{2} is 1 .
38. (C)

Methyl orange show Pinkish colour towards more acidic medium and yellow orange colour towards basic or less acidic media. Its working pH range is

$\underset{$| Pinkish |
| :--- |
| Red |$}{ }$ 3.9-4.5 \(\xrightarrow[\begin{array}{l}Yellow

orange\end{array}]{ }\)

Weak base have the pH range greater than 7 . When methyl orange is added to this weak base solution it shows yellow orange colour.
Now when this solution is titrated against strong acid the pH move towards more acidic range and reaches to end point near 3.9 where yellow orange colour of methyl orange changes to Pinkish red resulting to similar change in colour of solution as well.
39. (D)
n -factor of dichromate is 6 .
Also, n -factor of Mohr's salt is 1 as:
$\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{OH}} \mathrm{Fe}^{3+}$
$\because 1$ mole of dichromate $=6$ equivalent of dichromate
$\therefore 6$ equivalent of Mohr's salt would be required
Since, n -factor of Mohr's salt is 1,6 equivalent of its would also the equal to 6 moles.
Hence, 1 mole of dichromate will oxidise 6 moles of Mohr's salt.
40. (B)

The following reaction occur between $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$:
$26 \mathrm{H}^{+}+3 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+4 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow 6 \mathrm{SO}_{4}^{2-}+8 \mathrm{Cr}^{3+}+13 \mathrm{H}_{2} \mathrm{O}$
Change in oxidation number of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ per formula units is 6 (it is always fixed for $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$)
Hence, equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=\frac{\text { Molecular weight }}{6}$
41. (C)

It is an example of disproportionation reaction because the same species $\left(\mathrm{ClO}^{-}\right)$is being oxidised to ClO_{3}^{-}as well as reduced to Cl^{-}.
42. (A)

Oxalic acid dihydrate $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{mw}=126$
It is a dibasic acid, hence equivalent weight $=63$
\Rightarrow Normality $=\frac{6.3}{63} \times \frac{1000}{250}=0.4 \mathrm{~N}$
$\Rightarrow \quad \mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$\Rightarrow \quad 0.1 \times V_{1}=0.4 \times 10$
Hence, $\mathrm{V}_{1}=40 \mathrm{~mL}$
43. (D)

In MnO_{4}^{-}oxidation state of Mn is +7
In $\mathrm{Cr}(\mathrm{CN})_{6}^{3-}$, oxidation state of Cr is +3
In $\mathrm{NiF}_{6}^{2-}, \mathrm{Ni}$ is in +4 oxidation state.
In $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$, oxidation state of Cr is +6
44. (A)

In S_{8}, oxidation number of S is 0 , elemental state.
In $\mathrm{S}_{2} \mathrm{~F}_{2}, \mathrm{~F}$ is in -1 oxidation state, hence S is in +1 oxidation state.
In $\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}$ is in +1 oxidation state, hence S is in -2 oxidation state.
45. (B)

The balanced redox reaction is:
$3 \mathrm{MnO}_{4}^{-}+5 \mathrm{FeC}_{2} \mathrm{O}_{4}+24 \mathrm{H}^{+} \longrightarrow 3 \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+10 \mathrm{CO}_{2}+12 \mathrm{H}_{2} \mathrm{O}$
$\because 5$ moles of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ require 3 moles of KMnO_{4}
$\therefore 1$ mole of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ will require $\frac{3}{5}$ mole of KMnO_{4}
46. (A)

The balanced chemical reaction is:
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{SO}_{3}^{2-}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{SO}_{4}^{2-}+3 \mathrm{H}_{2} \mathrm{O}$
$\because 5$ moles SO_{3}^{2-} reacts with 2 moles of KMnO_{4}
$\therefore 1$ mole of SO_{3}^{2-} will react with $\frac{2}{5}$ mole KMnO_{4}
47. (A)

The balanced redox reaction is:
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+16 \mathrm{H}_{2} \mathrm{O}$
Hence, the coefficients of reactants in balanced reaction are 2,5 and 16 respectively
48. (B)

Volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}=$ Normality $\times 5.6=1.5 \times 5.6=8.4 \mathrm{~V}$
49. (C)

In $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$, oxidation number of Ba is +2 . Therefore,
$\mathrm{H}_{2} \mathrm{PO}_{2}^{-}: 2 \times(+1)+\mathrm{x}+2 \times-2=-1$
$\Rightarrow \quad \mathrm{x}=+1$
50. (B)

Equivalent weight in redox system is defined as:

$$
\mathrm{E}=\frac{\text { Molar mass }}{\mathrm{n}-\text { factor }}
$$

Here n -factor is the net change in oxidation number per formula unit of oxidising or reducing agent. In the present case, n-factor is 2 because equivalent weight is half of molecular weight. Also,
n -factor

$\mathrm{MnSO}_{4} \longrightarrow \frac{1}{2} \mathrm{Mn}_{2} \mathrm{O}_{3}$	$1(+2 \longrightarrow+3)$
$\mathrm{MnSO}_{4} \longrightarrow \mathrm{MnO}_{2}$	$2(+2 \longrightarrow+4)$
$\mathrm{MnSO}_{4} \longrightarrow \mathrm{MnO}_{4}^{-}$	$5(+2 \longrightarrow+7)$

$$
\mathrm{MnSO}_{4} \longrightarrow \mathrm{MnO}_{4}^{2-}
$$

$$
4(+2 \longrightarrow+6)
$$

Therefore, MnSO_{4} converts to MnO_{2}.
51. (32)
$\mathrm{SO}_{2}^{+4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \stackrel{+2}{\mathrm{H}_{2}} \stackrel{+6-8}{\mathrm{SO}}_{4}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
Change in oxidation number of sulphur $=6-4=2$
Equivalent mass of $\mathrm{SO}_{2}=\frac{\text { Molecular mass }}{2}=\frac{64}{2}=32$
52. (49.0)g
(a) Molecular mass of $\mathrm{H}_{3} \mathrm{PO}_{4}=(3+31+64)=98 \mathrm{~g} . \mathrm{H}_{3} \mathrm{PO}_{4}$ when neutralised to HPO_{4}^{2-}, two H^{+} ions have been replaced.
Thus, eq. mass $=\frac{\text { Mol.mass }}{\text { No.of replaceable hydrogen atoms }}$
$=\frac{98}{2}=49.0 \mathrm{~g}$
53. (6)
$\underset{1 \mathrm{~mol}}{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}}+14 \mathrm{H}^{+}+\underset{6 \mathrm{~mol}}{6 \mathrm{e}^{-}} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$\therefore 0.01 \mathrm{MCr}_{2} \mathrm{O}_{7}^{2-} \equiv 0.06 \mathrm{NCr}_{2} \mathrm{O}_{7}^{2-}$
Number of millimoles $=\mathrm{M} \times \mathrm{V}=0.01 \times 100=1$
Number of milliequvalents $=\mathrm{N} \times \mathrm{V}=0.06 \times 100=6$
54. (5)

We know that,
$M_{1} V_{1}+M_{2} V_{2}=M_{R}\left(V_{1}+V_{2}\right)$
$\mathrm{x} \times 250+\mathrm{y} \times 500=1.6(2000)$
$x+2 y=1.6 \times 8$
$x+2 y=12.8$
$\frac{x}{y}+2=\frac{12.8}{y}$
$\frac{5}{4}+2=\frac{12.8}{y}$
$\frac{5}{4}+2=\frac{12.8}{y}$
$\frac{13}{4}=\frac{12.8}{y}$
$\mathrm{y}=\frac{12.8 \times 4}{13}=3.94$
$x=4.92$
55. (2)
$\mathrm{A}^{\mathrm{n+}}$ is oxidised to AO_{3}^{-}
Change in oxidation number $=5\left(\right.$ in $\left._{\mathrm{AO}}^{3}-\mathrm{C}\right)-\mathrm{n}\left(\mathrm{inA}^{\mathrm{n}+}\right)$

$$
\begin{equation*}
=5-\mathrm{n} \tag{i}
\end{equation*}
$$

$2.68 \times 10^{-3} \mathrm{~mol}^{2} \mathrm{~A}^{\mathrm{n}+}$ ion react with $1.6 \times 10^{-3} \mathrm{~mol}$ of MnO_{4}^{-}ions.
$\therefore 1 \mathrm{~mol}$ of $\mathrm{A}^{\mathrm{n}+}$ ion will react with $\frac{1.6 \times 10^{-3}}{2.68 \times 10^{-3}} \mathrm{~mol}^{2} \mathrm{MnO}_{4}^{-}$ions
$=0.579 \mathrm{~mol}$ of MnO_{4}^{-}ions
$2 \mathrm{~K}^{+7} \mathrm{MnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+5[\mathrm{O}]$
Number of equivalents of MnO_{4}^{-}used in oxidation of $\mathrm{A}^{\mathrm{n+}}$ to

$$
\mathrm{AO}_{3}^{-}=0.597 \times 5=2.985 \approx 3
$$

Thus, from equation (i), $5-\mathrm{n}=3$
$\mathrm{n}=2$
56. (37)
$\mathrm{MnO}_{4}^{-} \quad \longrightarrow \quad \mathrm{Mn}^{2+}$
(Oxidaiton number (Oxidaiton number
of $\mathrm{Mn}=+7) \quad$ of $\mathrm{Mn}=+2$)
Equivalent mass of $\mathrm{KMnO}_{4}=\frac{\text { Molecular mass }}{\text { Change in Oxidation number }}$
$=\frac{158}{5}=31.6$
57. (63.00)
$\underset{\text { (NaOH) }}{\mathrm{N}_{1} \mathrm{~V}_{1}}=\underset{\text { (Acid) }}{\mathrm{N}_{2} \mathrm{~V}_{2}}$
$\frac{1}{10} \times 25=\mathrm{N}_{2} \times 20$
$\mathrm{N}_{2}=\frac{25}{10 \times 20}=0.125$
$\mathrm{N}_{2}=\frac{25}{10 \times 20}=0.125$
Strength $=$ Noramlity \times Eq. mass
Eq. mass of the acid $=\frac{7.875}{0.125}=63.00$
58. (2)

25 mL of $\frac{\mathrm{N}}{15} \mathrm{NaOH}$ solution $\equiv 25 \mathrm{~mL}$ of $\frac{\mathrm{N}}{15}$ oxalic acid solution Mass of oxalic acid present in 25 mL of $\frac{\mathrm{N}}{15}$ oxalic acid solution
$=\frac{\mathrm{N} \times \mathrm{E} \times \mathrm{V}}{1000}=\frac{1 \times(90+18 \mathrm{x}) \times 25}{15 \times 2 \times 1000}$
$=\frac{(90+18 x)}{1200} g$
Actually $\frac{(90+18 \mathrm{x})}{1200} \mathrm{~g}$ oxalic acid is present in 16.68 mL
250 mL of the solution contains oxalic acid
$=\frac{(90+18 \mathrm{x}) \times 250}{1200 \times 16.68}=1.575($ given $)$
Or $90+18 \mathrm{x}=\frac{1.575 \times 1200 \times 16.68}{250}=126$
Or $18 \mathrm{x}=126-90=36$
$\mathrm{x}=2$
59. (30.0)
$60 \mathrm{~mL} 0.5 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \equiv 60 \mathrm{~mL} 0.5 \mathrm{NI}_{2}$

$$
\equiv 60 \mathrm{~mL} 0.5 \mathrm{NCl}_{2}
$$

Amount of chlorine $=\frac{35.5 \times 0.5}{1000} \times 60=1.065 \mathrm{~g}$
$\%$ of available chlorine $=\frac{1.965}{3.55} \times 100=30.0$
60. (3)

Number of moles of $\mathrm{KMnO}_{4}=\frac{\text { MV }}{1000}=\frac{0.145 \times 46.9}{1000}$
$=6.8 \times 10^{-3}$
Number of moles of $\mathrm{H}_{2} \mathrm{O}_{2}=6.8 \times 10^{-3} \times 2.5=0.017$
Mass of $\mathrm{H}_{2} \mathrm{O}_{2}=0.017 \times 34=0.578$
Mass $\%$ of $\mathrm{H}_{2} \mathrm{O}_{2}=\frac{0.578}{20} \times 100 \approx 2.9$

PACE-IIT ${ }_{2}$ MEDICAL

SOLUTIONS

61. (B)

Equation of straight line perpendicular to $3 x-4 y-7=0$ is $4 x+3 y+c=0$ It distance of origin is
$\frac{|c|}{\sqrt{3^{2}+4^{2}}}=10 \Rightarrow|c|=50$
$\mathrm{c}= \pm 50$
62. (C)

Required ratio is
$-\left(\frac{3+4-10}{9+16-10}\right)=\frac{3}{15}=\frac{1}{5}$
63. (A)

Coordinates of the vertices of the square are $\mathrm{A}(0,0), \mathrm{B}(0,1), \mathrm{C}(1,1)$ and $\mathrm{D}(1,0)$.

Now the equation of AC is $\mathrm{y}=\mathrm{x}$ and that of BD is

$$
\begin{aligned}
& \mathrm{y}-1=-\frac{1}{1}(\mathrm{x}-0) \\
\Rightarrow \quad & \mathrm{x}+\mathrm{y}=1
\end{aligned}
$$

64. (B)

The equation of the line joining the points $(2,-1)$ and $(5,-3)$ is given by

$$
\begin{align*}
& \mathrm{y}+1=\frac{-1+3}{2-5}(\mathrm{x}-2) \\
& \text { or } \quad 2 \mathrm{x}+3 \mathrm{y}-1=0 \tag{1}
\end{align*}
$$

since, $\left(x_{1}, 4\right)$ and $\left(-2, y_{1}\right)$ lie on $2 x+3 y-1=0$, therefore

$$
2 \mathrm{x}_{1}+12-1=0 \Rightarrow \mathrm{x}_{1}=-\frac{11}{2} \text { and }-4+3 \mathrm{y}_{1}-1=0 \Rightarrow \mathrm{y}_{1}=\frac{5}{3}
$$

Thus, $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ satisfies $2 \mathrm{x}+6 \mathrm{y}+1=0$
65. (B)

The given lines

$$
\begin{aligned}
& \mathrm{ax} \pm \mathrm{by} \pm \mathrm{c}=0 \\
\Rightarrow & \frac{\mathrm{x}}{ \pm \mathrm{c} / \mathrm{a}}+\frac{\mathrm{y}}{ \pm \mathrm{c} / \mathrm{b}}=1
\end{aligned}
$$

the vertex at $\mathrm{A}(\mathrm{c} / \mathrm{a}, 0), \mathrm{C}(-\mathrm{c} / \mathrm{a}, 0), \mathrm{B}(0, \mathrm{c} / \mathrm{b}), \mathrm{D}(0,-\mathrm{c} / \mathrm{b})$.
Therefore, the diagonals AC and BD of quadrilateral ABCD are perpendicular.
Hence, it is a rhombus whose area is given by

$$
\frac{1}{2} \times \mathrm{AC} \times \mathrm{BD}=\frac{1}{2} \times \frac{2 \mathrm{c}}{\mathrm{a}} \times \frac{2 \mathrm{c}}{\mathrm{~b}}=\frac{2 \mathrm{c}^{2}}{\mathrm{ab}}
$$

66. (C)

The given inequality is equivalent to the following system of inequalities.
$2 x+3 y \leq 6$, where $x \geq 0, y \geq 0$
$2 x-3 y \leq 6$, when $x \geq 0, y \leq 0$
$-2 x+3 y \leq 6$, when $x \leq 0, y \geq 0$
$-2 x-3 y \leq 6$, where $x \leq 0, y \leq 0$
Which represents a rhombus with sides
$2 x \pm 3 y=6$ and $2 x \pm 3 y=-6$
Length of the diagonals is 6 and 4 units along x - and y-axes.
Therefore, the required area is
$\frac{1}{2} \times 6 \times 4=12$ sq. units.

67. (A)

Extremities of the given diagonal are $(4,0)$ and $(0,6)$.
Hence, slope of this diagonal is $-3 / 2$ and slope of other diagonal is $2 / 3$.
The equation of the other diagonal is
$\frac{x-2}{3}=\frac{y-3}{2}=r$
$\sqrt{\sqrt{13}} \quad \sqrt{\sqrt{13}}$

For the extremities of the diagonal, $r= \pm \sqrt{13}$.
Hence, $x-2= \pm 3, y-3= \pm 2$

$$
x=5,-1 \text { and } y=5,1
$$

Therefore, the extremities of the diagonal are $(5,5)$ and $(-1,1)$.
68. (D)

Angle between both the lines is 45°.
Hence $\mathrm{OP}=\mathrm{OP}^{\prime} \sqrt{2}=\left(\frac{5}{\sqrt{2}}\right) \times \sqrt{2}=5$.
69. (A)

Since the triangle is right angled, so the cirumcentre will be the middle point of hypotenuse, i.e. $(2,1)$.
70. (B)

Let the third vertex be (h, k).

Now slope of AD is $(k-2) /(h-1)$ slope of $B C$ is $(5+3) /(-2-4)=-4 / 3$, slope of BE is $(-3-2) /(4-1)=5 / 3$ and slope of AC is $(\mathrm{k}-5) /(\mathrm{h}+2)$.
Since AD \perp BC, so
$\frac{\mathrm{k}-2}{\mathrm{~h}-1} \times \frac{-4}{3}=-1$

$$
\begin{equation*}
\Rightarrow 3 \mathrm{~h}-4 \mathrm{k}+5=0 \tag{1}
\end{equation*}
$$

Again since $\mathrm{BE} \perp \mathrm{AC}$, so

$$
\begin{align*}
& -\frac{5}{3}+\frac{\mathrm{k}-5}{\mathrm{~h}+2}=-1 \\
& \Rightarrow 3 \mathrm{~h}-3 \mathrm{k}+31=0 \tag{2}
\end{align*}
$$

On solving (1) and (2) we get $\mathrm{h}=33, \mathrm{k}=26$.
Hence, the third vertex is $(33,26)$.
71. (C)

For any point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ that is equidistant from given line, we have

$$
\begin{aligned}
& x+y-2=-(x+y-2 \sqrt{2}) \\
\Rightarrow \quad & 2 x+2 y-3 \sqrt{2}=0
\end{aligned}
$$

72. (D)

All value of a.
73. (B)

The set of lines is $4 a x+3 b y+c=0$, where $a+b+c=0$.
Eliminating c, we get

$$
\begin{aligned}
& 4 a x+3 b y-(a+b)=0 \\
\Rightarrow \quad & a(4 x-1)+b(3 y-1)=0
\end{aligned}
$$

This passes through the intersection of the lines
$4 x-1=0$ and $3 y-1=0$, i.e., $x=1 / 4, y=1 / 3$, i.e., $(1 / 4,1 / 3)$.
74. (B)

The line passing through $(2,3)$ and perpendicular to $-y+3 x+4=0$ is

$$
\frac{y-3}{x-2}=-\frac{1}{3}
$$

or $3 y+x-11=0$
Therefore, foot is $\mathrm{x}=-1 / 10, \mathrm{y}=37 / 10$.
75. (A)

We have,

$$
3 x+5 y=2007 \Rightarrow x+\frac{5 y}{3}=669
$$

Clearly, 3 must divide $5 y$ and so $y=3 k$, for some $k \in N$.
Thus, $\mathrm{x}+5 \mathrm{k}=669$
$\Rightarrow 5 \mathrm{k} \leq 668$
$\Rightarrow \mathrm{k} \leq \frac{668}{5} \Rightarrow \mathrm{k} \leq 133$
76. (A)

The point $(4,5)$ lies on the given line $7 x-3 y-13=0$.

The locus of the point equidistant from the given point and the line is a line perpendicular to $7 x-3 y$ $-13=0$ at $(4,5)$.
77. (B)

$(0,0)$
$(1,2)$
$\mathrm{G} \equiv\left(\frac{1 \times 1+2 \times 0}{3}, \frac{2 \times 1+2 \times 0}{3}\right)$

$$
=\left(\frac{1}{3}, \frac{2}{3}\right)
$$

78. (D)

The point Q is $(-\mathrm{b},-\mathrm{a})$ and the point R is $(-\mathrm{a},-\mathrm{b})$.
Therefore, the midpoint of PR is $(0,0)$.
79. (A)

$$
\begin{aligned}
& 9 x^{2}-24 x y+16 y^{2}-12 x+16 y-12=0 \\
& \Rightarrow(3 x-4 y+2)(3 x-4 y-6)=0
\end{aligned}
$$

Hence, distance between lines is $\frac{|6-(-2)|}{5}=\frac{8}{5}$.
80. (D)

Here $m y(y-m x)+x(y-m x)=0$, i.e., $(y-m x)(m y+x)=0$.
So the lines are $y=m x$ and $y=(-1 / m) x$.
Bisectors between the lines $\mathrm{xy}=0$ and $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=-\mathrm{x}$.
Therefore, $\mathrm{m}=1$ or -1 .
81. (3)

Equation of any line through $(2,3)$ is

$$
\begin{aligned}
& \mathrm{y}-3=\mathrm{m}(\mathrm{x}-2) \\
\Rightarrow \quad & \mathrm{y}=\mathrm{mx}-2 \mathrm{~m}+3
\end{aligned}
$$

From the figure, area of $\triangle \mathrm{OAB}$ is ± 12.
That is, $\frac{1}{2}\left(\frac{2 \mathrm{~m}-3}{\mathrm{~m}}\right)(3-2 \mathrm{~m})= \pm 12$

Taking positive sign, we get $(2 \mathrm{~m}+3)^{2}=0$.
This gives one value of m as $-3 / 2$. Taking negative sign, we get $4 m^{2}-36 m+9=0(D>0)$ This is a quadratic in m which gives two values of m. Hence, three straight lines are possible.
82. (32)

$\mathrm{P} \equiv\left(\frac{\alpha-2}{2}, \frac{\beta-1}{2}\right) \equiv\left(\frac{\gamma+1}{2}, \frac{\delta}{2}\right)$
$\frac{\alpha-2}{2}=\frac{\gamma+1}{2}$ and $\frac{\beta-1}{2}=\frac{\delta}{2}$
$\Rightarrow \alpha-\gamma=3$
$\beta-\delta=1$
Also, $((\gamma, \delta)$ lies on $3 \mathrm{x}-2 \mathrm{y}=6$

$$
\begin{equation*}
3 \gamma-2 \delta=6 \tag{3}
\end{equation*}
$$

and (α, β) lies on $2 x-y=5$
$\Rightarrow 2 \alpha-\beta=5$
Solving (1), (2), (3), (4)
$\alpha=-3, \beta=-11, \gamma=-6, \delta=-12$
$|\alpha+\beta+\gamma+\delta|=32$
83. (8)

Let E is mid point of diagonals

$$
\begin{array}{ll}
\frac{\alpha+\gamma}{2}=\frac{1+1}{2} & \& \frac{\beta+\delta}{1}=\frac{2+0}{2} \\
\alpha+\gamma=2 & \beta+\delta=2 \\
2(\alpha+\beta+\gamma+\delta)=2(2+2)=8
\end{array}
$$

84. (14)

Locus of point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ whose distance from given $\mathrm{x}+2 \mathrm{y}+7=0 \& 2 \mathrm{x}-\mathrm{y}+8=0$ are equal is $\frac{x+2 y+7}{\sqrt{5}}= \pm \frac{2 x-y+8}{\sqrt{5}}$
$(x+2 y+7)^{2}-(2 x-y+8)^{2}=0$
Combined equation of lines
$(x-3 y+1)(3 x+y+15)=0$
$3 x^{2}-3 y^{2}-8 x y+18 x-44 y+15=0$
$x^{2}-y^{2}-\frac{8}{3} x y+6 x-\frac{44}{3} y+5=0$
$x^{2}-y^{2}+2 h x y+2 g x^{2}+2 f y+c=0$
$\mathrm{h}=\frac{4}{3}, \mathrm{~g}=3, \mathrm{f}=-\frac{22}{3}, \mathrm{c}=5$
$\mathrm{g}+\mathrm{c}+\mathrm{h}-\mathrm{f}=3+5-\frac{4}{3}+\frac{22}{3}=8+6=14$
85. (529)

The equations of two adjacent sides of a parallelogram ABCD be $2 \mathrm{x}-3 \mathrm{y}=-23$ and $5 \mathrm{x}+4 \mathrm{y}=23$, So, $\mathrm{AB} \equiv 2 \mathrm{x}-3 \mathrm{y}=-23$ and $\mathrm{BC} \equiv 5 \mathrm{x}+4 \mathrm{y}=23$
Also given, $A C \equiv 3 x+7 y=23$
Solving the above lines we get,
$\mathrm{A}(-4,5), \mathrm{B}(-1,7), \mathrm{C}(3,2)$

We know that,
Diagonal of parallelogram have same midpoint,
So AC and BD have same mid-point and let point D be (x, y),
$\frac{x-1}{2}=\frac{-4+3}{2} \Rightarrow x=0$ and $\frac{y+7}{2}=\frac{2+5}{2} \Rightarrow y=0$
Hence, point D is $(0,0)$
Now equation of BD will be $7 x+y=0$
Now finding the distance of $\mathrm{A}(-4,5)$ form $7 \mathrm{x}+5=0$ we get,
$\mathrm{d}=\left|\frac{7(-4)+5}{\sqrt{7^{2}+1^{2}}}\right|=\frac{23}{\sqrt{50}}$
Hence, $50 \mathrm{~d}^{2}=23^{2}=529$
86. (31)

Given:
$3 x+4 y=60$
$\Rightarrow \frac{\mathrm{x}}{20}+\frac{\mathrm{y}}{15}=1$

If $x=1, y=\frac{57}{4}=14.25$
So, points are
$(1,1)(1,2)-(1,14) \Rightarrow 14$ points.
If $\mathrm{x}=2, \mathrm{y}=\frac{27}{2}=13.5$
So, points are
$(2,2)(2,4) \ldots(2,12) \Rightarrow 6$ points.
If $x=3, y=\frac{51}{4}=12.75$
So, points are $(3,3)(3,6)-(3,12) \Rightarrow 4$ points.
So, points are
$(4,4)(4,8) \Rightarrow 2$ points.
If $x=5, y=\frac{45}{4}=11.25$
So, points are
$(5,5),(5,10) \Rightarrow 2$ points.
If $x=6, y=\frac{21}{2}=10.5$
So, point is

$$
(6,6) \Rightarrow 1 \text { points }
$$

If $x=7, y=\frac{39}{4}=9.75$
So, point is
$(7,7) \Rightarrow 1$ point
If $\mathrm{x}=8, \mathrm{y}=9$
So, point is
$(8,8) \Rightarrow 1$ point
If $x=9 \Rightarrow y=\frac{33}{4}=8.25 \Rightarrow$ no point
Total points inside the triangle $=31$ points
87. (5)

P must be centroid of $\triangle \mathrm{ABC}$
$\therefore \mathrm{P}\left(\frac{17}{6}, \frac{8}{3}\right) \Rightarrow \mathrm{PQ}=\sqrt{\left(\frac{24}{6}\right)^{2}+\left(\frac{9}{3}\right)}=5$ units
88. (8)

Eliminating x and y from the three equations, we get

$$
\begin{aligned}
& -2=\mathrm{m}(\mathrm{a}+\mathrm{m}) \\
& \Rightarrow \mathrm{m}^{2}+\mathrm{am}+2=0
\end{aligned}
$$

Since $m \in R$,
Discriminant ≥ 0
$\Rightarrow \mathrm{a}^{2}-8 \geq 0$
$\Rightarrow \mathrm{a}^{2} \geq 8$
89. (1)

The equations of the line L in the two coordinates systems are
$\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{p}+\frac{y}{q}=1$
Where (x, y) are the new coordinates of a point (x, y) when the axes are rotated through a fixed angle, keeping the origin fixed.
As the length of the perpendicular from the origin has not changed,
$\frac{1}{\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}}=\frac{1}{\sqrt{\frac{1}{\mathrm{p}^{2}}+\frac{1}{\mathrm{q}^{2}}}}$
$\Rightarrow \frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}=\frac{1}{\mathrm{p}^{2}}+\frac{1}{\mathrm{p}^{2}}$
$\Rightarrow \frac{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}{\frac{1}{\mathrm{p}^{2}}+\frac{1}{\mathrm{q}^{2}}}=1$
90. (81)
$\frac{3}{a}=\frac{\mathrm{a}}{27} \Rightarrow \mathrm{a}^{2}=81$

