HOME ASSIGNMENT- 1

1. (B) Alkane, ($\mathrm{C}_{n} \mathrm{H}_{2 n+2}$) can exibit only position and chain isomers.
2. (D)

$$
\equiv 14
$$

3. (D)

4 (D)

5. (D) Total No. of monochlonodeniratins are possible for

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}-3
$$

n-pentane

6. (D)

7. (B) I \& II are peramerism.
8. (A)

Q (D) $C_{6} H_{14} \mathrm{O}$ can be Alcont \& Ethen
10. (D)

11 (D) Chain isomeism is possible fro all Onganic compowed heving no.g carbon more then ' 4 '
12. (A)
13. (C) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ consist 14 sigma and 1 pi bad.
(2-Pentere)
14. (D)

15. (A) Both Propanal \& fropanome Laving same molece lar farmere as $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$.
16.(B)

total No. - 3
17. (A)
18. (c) only (3) sratement is hrang.

1s (B) ((C) consist both α-Acidic hydrojen.
20. (D) $\mathrm{RCO}_{2}+\mathrm{N}_{1}^{\prime \prime} 0_{0}$ consist α-Acidic bydnojer.

21 (A)

22. (A, C, D)

23. (A)

24. (A, C, D) don't consist α-Acidir hydrogen.
25. (B)

2,4 Hexanediane having moer stable cenjiy at base.
26. (A,B) I\&I are tantomus.
I. II $\&$ II are functional isomus.
27.(C)
28. (c)

having same molecular farmels.
29. (B)

$30(B)$

31 (B)

does not ansist α-Acidiz hychojen
3^{2} (D)
1-7 and 170° are pair of nesonatry siruchuse.
33. (D)

and

less repulsion
H -Bonding \& resonavee srabilis ation
hone AssignMant-2

1. (c)

(Gauche)
Srabilised through K-Bonding.
2. (D)
3. (B) Both (I) \triangle (II) belongs to same Hondogous sevies
4. (A) I \& II are Conformationel isomers, as they canbe Convent into each without breaki. eny bands.
5. (A) IL II are positional iscouers
6. (D) Ir consist three membhed cyclic ring.
7. (B) If consist minimum forsional sbsein.
8. (c)

9 (c)
 are corfumational isomers. and they can's be Separared by distillation or Necrystallisation
8. Bulkin group should nor be present on axial position as it is urstable due 1,3 diaxial inthartion.
8. (B) Given Compound consist two sterocenter ard thas tohal number of diastreomers $=2^{2}=4$
9. (C) Ordu of ditpole Moment (C) $>(A)>(B)$

(c)

(4)
(B)
10. (A)
 is non-planar, thus canst exibit geometrical Isomerism.
11. (D)

-ris

- Hray

12. (B) they are geometrical isomens.

PACe-B
$1 . \quad$ (b)

(c) and (e)

\therefore (i) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{ClBr}$

TeralNo- 3
(ii) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$

Tela no-3
(iii)
 Totel No-3
(iv)

is and cisand cisand trans trars trans
home AssIGMMENT-3.
PART-A
1.(B)

2. (D)

3. (B)

1-Pheng1-2-butere

4. (3)

(z)
and

- hrars

5. (D)

6. (A)
 and

- lis

(E)

trans-1-chloroprop-1-ere

HOME ASSIGNMENT-Y

1. (D)

total no. of isomers

$$
=2^{2}=4
$$

2. (c)
(A) and (B) are identical
(A) and (C) are entantiomers
3. (c)

2chird

1 chirel carbon

No chirel calban 1 chisel
corben.
4. (c)

(I)

(III)
5. (D)

on evan no. of exchenge on same chiral casban III \& I will be identical.
8. (8)

Q (C) I\& II are nom-superimposable mirror inage and thers they are enantiomers.
1411 are structural isomes.
10. (B)
 (Mesocompound)
11. (B) Relatine Configuration
12. (B)
optically
Acrine
opsically hactive
13. (c) The resultant product is

consist two chinal carba Toralne. of isomers.

$$
=2^{2}=4
$$

14. (C) ' a ' is meso compound but $i b$ ' is chiral.
15. (A) Ciren compound are not mitror image
16. (A)
 is meso compound

17 (D)

18. (D) Resultant oxime is

3 Stereocentirs'

$$
\begin{gathered}
\text { Toral No of Isomer }=2^{3} \\
=8 .
\end{gathered}
$$

1. (D)

2. (D)

These contain -C = C-
3. (D)

4. (C)

5. (B)

Note: chiral centre are marked.
6. (B)

7. (A)

8. (D)
9. (D)

The molecule has a plane of symmetry, so optically inactive.
10. (D)

2 exchanges on each chiral atom
11. (A)

Presence of plane of symmetry and center of symmetry
12. (B)

They are non superimposable mirror images
13. (B)

Meso compounds have got the plane of symmetry.
14. (A)

15. (C)

16. (A)

Let, 1 mole of sucrose be taken. On hydrolysis, one mole of glucose and one mole of fructose are formed.
Optical rotation of 2 moles of mixture $=1 \times 52^{\circ}+1 \times(-92)^{\circ}=-40^{\circ}$
Hence optical rotation of 1 mole of mixture $=-\frac{40}{2}=-20^{\circ}$
17. (D)

 (2-methyl butan-1-al)
18. (B)

19. (D)

20. (B)

Due to presence of one chiral carbon
21. (C)

2 double bond are capable of showing geometrical isomerism and one chiral center is present
22. (C)
23. (C)

24. (D)

Butanone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}\right)$ and diethyl ether $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}\right)$ do not have same molecular formula and hence are not isomers.
25. (B)

Both the carbon have individually two different groups and rotation is restricted due to double bond.
26. (A)

They are non super imposible mirror images
27. (D)

Stability order of various conformers follows:
Anti > gauche > partially eclipsed > fully eclipsed
a - gauche
b - fully eclipsed
c - partially eclipsed
d - anti
28. (D)

In the given compounds, there is restricted rotation about ' $\mathrm{C}-\mathrm{C}$ ' bond $\mathrm{C}-\mathrm{N}$ bonds.
29. (C)

The given compounds are $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$. They are position isomers.
30. (A)

(I)

(II)

(I)

Similarly

\therefore (I) and (II) are identical; (I) and (III) are diastereomers.
31. (D)

Alkyne and diene are different fuctional group
32. (D)
33. (D)
34. (C)

Alcohols and aldehydes are not functional isomers due to different molecular formula
35. (C)

The various isomers possible are:
n-hexane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane.
36. (B)

The given stereoisomers are diastereomers.
37. (C)

In a compound having n double bonds and two different terminals, the number of geometrical isomers is 2^{n}. The given compound has $n=2$. Therefore, number of geometrical isomers $=2^{2}=4$.
38. (D)

No plane of symmetry and no center symmetry
39. (D)

No acidic hydrogen
40. (A)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}-\mathrm{CH}_{3}$ does not show cis -trans isomerism.
H ${ }_{\mathrm{C}}^{\mathrm{C}} \mathrm{C}_{3}$
41. (B)
H^{+}will be replaced by D^{+}during enolization but not T^{+}. This is because heavier isotope forms stronger bond
42. (D)

43. (D)

Minimum steric repulsion and minimum dihedral strain. Therefore, most stable conformation.
44. (B)
$\mathrm{H}-\mathrm{C} \equiv \mathrm{N} \rightleftharpoons \stackrel{-}{\mathrm{C}} \equiv \stackrel{+}{\mathrm{N}}-\mathrm{H}$ (Shifting of H^{+}occurs)
45. (D)

By rotation on the plane of the paper, (1) produces a mirror image of (2).
46. (B)

It shows optical isomerism as the molecule does not possess any element of symmetry.
47. (B)

Dipole moment is a vector quantity. It gets cancelled in the case of trans but-2-ene.
48. (A)

They are non superimpasible mirror image of each other
49. (D)

All enolizable H^{+}will be replaced by D^{+}
50. (C)

Three chiral atoms. Number of stereoisomers $=2^{3}=8$
51. (C)
 chiral carbon to show optical isomerism.
52. (D)

53. (D)

No intramolecular hydrogen bonding and more steric repulsion
54. (C)
55. (C)
56. (B)

Due to presence of two chiral atoms
57. (A)

One or more options may correct :
58. (B, D)
59. (B, D)
60. (A, D)
61. (A, B, D)
62. (B, C)
63. (A, B, D)
64. (A, B, C, D)
65. (A, C)
66. (A, C)
67. (A, B, C)
68. (A, B, C, D)
69. (A, B)
70. (B, C, D)

Comprehension Type
71.
(D)
72. (B)
73. (C)
74. (D)
75. (C)
76. (C)
77.
(D)
78. (D)
79. (C)
80. (D)

Matrix Match Type

81. (A) - 3 ; (B) - 1, 2 ; (C) - 1 ; (D) - 1, 3, 4
82. (A) $-1,2,4$; (B) $-1,2,3$; (C) $-3,4$; (D) -4
83. (A) $-1,2,3,4$; (B) $-1,3,4$; (C) $-1,2,3,4$; (D) -1
84. (A) - 2, 4 ; (B) - 3 ; (C) - 2 ; (D) - 1
85. (A) $-3,4$; (B) -4 ; (C) - 1 ; (D) - 1,2,3,4
86. (A) -3 ; (B) -4 ; (C) -2 ; (D) -1
87. $(A)-2$; (B) $-1,4$; (C) -3 ; (D) -1

Assertion Reasoning Type

88. (C)

Mirror image of meso is the same compound.
89. (C)
90. (A)
91. (D)
92. (B)

Energy released due to resonance in benzene is not sufficient to convert trione into enol form.
93. (B)
94. (A)
95. (C)
96. (B)

1. B
2.
3. (D)

When cyclohexane is poured on water, it floats because cyclohexane is less dense than water.
4. (A, C)

$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$ does not show the property of geometrical isomerism.

$\mathrm{CH}_{3}-\underset{\mathrm{CH}_{3}}{\mathrm{C}}=\mathrm{CH}-\mathrm{CH}_{3}$ does not show the property of geometrical isomerism.
5. B
6. C.

D-word is used to represent the arrangement of - OH group in right side as in glyceraldehyde.

and + sign is used to represent the rotation in right side. Hence in D-(+) - tartaric acid

7. D ,

Molecule $\mathrm{C}_{2} \mathrm{BrCIFI}$ shows geometrical isomerism as $\mathrm{E} \& \mathrm{Z}$-isomers.

I (Z-isomer)

I (Z-isomer)

II (E-isomer)

Hence total isomers are six.
8. Enantiomeric pair \equiv (I \& III)

Diastereomeric pairs \equiv (I \& II), (II \& III)
9. D,

In compounds

' ${ }^{\prime}$ '

In 'D' (2-Methylbutanoic acid) asymmetric C-atom is present. So, it shows the property of stereoisomerism.
(Compound ' A ' does not show the property of geometrical isomerism)
10. (A)

When optically active acid reacts with racemic mixture of an alcohol, it forms two types of isomeric esters. In each the configuration of the chiral centre of acid will remain the same. So the mixture will be optically active.
11.

\pm or Racemic mixture of
2-phenylpropanoic acid

$$
\downarrow
$$

(+) (+)-ester

(-) (+)-ester

These two esters are diasteromers.
12. (a)

b) Less stability is due to Vander Waal's strain
13. (a)

Mole fraction of anti form $=0.82$
Mole fraction of Gauche form $=0.18$
$\mu_{\mathrm{ob} .}=1$
$1=\mu_{(\text {anti) }} \times 0.82+\mu_{(\text {Gauche })} \times 0.18$
$\mu_{(\text {anti) }}=0$
$\therefore 1=\mu_{\text {(Gauche) }} \times 0.18$
$\mu_{\text {Gauche }}=\frac{1}{0.18}=5.55 \mathrm{D}$
b)

(Anti)

(Gauche)
14. (B)

15. (B)

d. 1

d, 1

$\mathrm{M} \rightarrow \mathrm{d}, 1$ cannot be separated by fractional distillation.
16. (C)

17. (C)
18. (A, D)

The molecule is optically active.

The molecule possesses an axis of symmetry $\left(\mathrm{C}_{2}\right)$ perpendicular to the $\mathrm{C}-\mathrm{C}$ bond.
19. (B), (C), (D)
20. (A, D)
21. 7

Cyclic $\mathrm{C}_{5} \mathrm{H}_{10}$

1

2

4

5

For $3^{\text {rd }}$ structure 2 cis - trans and 1 optical isomer are possible.
Total 7 isomers.
22. (B, D)

On $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond axis
$\mathrm{X}=\mathrm{CH}_{3}$
$\mathrm{Y}=\mathrm{CH}_{3}$
On $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond axis
X $=\mathrm{H}$
$\mathrm{Y}=\mathrm{C}_{2} \mathrm{H}_{5}$
23. 5

In $\mathrm{C}_{4} \mathrm{H}_{6}$, possible cyclic isomers are

24. (B, C)

Along C-C single bond conformations are possible in butadiene in which all the atoms may not lie in the same plane.
25. (8)

1

1

Total $=2+4+1+1=8$
26. (A,B)

Converting all the structure in the Fischer projection

M

N

0

P

Q

M and N are diastereoisomers
M and O are identical
M and P are identical
M and Q are diastereoisomers
Hence, the correct options are A, B, C.
27. (D)
pK_{a} of PhOH (carbonic acid) is 9.98 and that of carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ is 6.63 thus phenol does not give effervescence with HCO_{3}^{-}ion.
28. (C)
29. (ACD)

Draw strcuture of each compound and write IUPAC name of the given compound.
Match the molecular formula of given compound with molecular formula of compound given in choices.
The combination of names for possibles alchohols with molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ is/are

Formula	Names
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	n-butyl alcohol / n-butanol / buan-1-ol
$\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OH}$	Iso-butyl alcohol / 2-methyl propan-2-ol
CH_{3}	
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{OH}$	Secondary butyl alcohol / butan-2-ol
CH_{3}	
CH_{3}	Tertiary butyl alcohol / tert butanol / 2-methyl propan-2-ol
$\mathrm{CH}_{3}-\mathrm{C}-\mathrm{OH}$	
CH	

Hence, choices (a), (c) and (d) are correct.
30. (C)
P.

Q.

R.

S.

31. (7)

As given in the question 3 stereocenters are visible, i.e.

Hence, the total nummber of stereoisomers $=2^{3}=8$
But out of these the following one is optically inactive due to symmetry

Hence, total number of optically active stereoisomers = 7

