Formula Book

(specially designed for $10^{\text {th }}$ Board appearing students)

All The Best

PHYSICS

Formulae

1. $\begin{aligned} \text { Work done } & =\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{S}} \\ & =|\overrightarrow{\mathrm{F}}||\overrightarrow{\mathrm{S}}| \cos \theta\end{aligned} \quad\left[\begin{array}{l}\overrightarrow{\mathrm{F}} \longrightarrow \text { Force } \\ \overrightarrow{\mathrm{S}} \longrightarrow \text { Displacement } \\ \theta \longrightarrow \text { Angle between } \overrightarrow{\mathrm{F}} \text { and } \overrightarrow{\mathrm{S}}\end{array}\right.$
2. Mirror Formula

$$
\frac{1}{\mathrm{v}}+\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}} \quad\left[\begin{array}{l}
\mathrm{v} \longrightarrow \text { image distance from pole } \\
\mathrm{u} \longrightarrow \text { object distance from pole } \\
\mathrm{f} \longrightarrow \text { focal length }
\end{array}\right.
$$

3. Snell's Law

$$
\mu_{1} \sin \mathrm{i}=\mu_{2} \sin \mathrm{r} \quad\left[\begin{array}{l}
\mathrm{i} \longrightarrow \text { angle of incidence } \\
\mathrm{r} \longrightarrow \text { angle of refraction } \\
\mu_{1}, \mu_{2} \longrightarrow \text { Re fractive indices of two media }
\end{array}\right.
$$

4. Time Period of simple Pendulum

$$
\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}} \quad\left[\begin{array}{l}
\ell \longrightarrow \text { length of Pendulum } \\
\mathrm{g} \longrightarrow \text { acceleration due to gravity }
\end{array}\right.
$$

5. Newton's Law of universal gravitation:

$$
\mathrm{F}=\frac{\mathrm{G} \mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}\left[\begin{array}{l}
\mathrm{m}_{1}, \mathrm{~m}_{2} \longrightarrow \text { masses of bodies } \\
\mathrm{r} \longrightarrow \text { distance between them } \\
\mathrm{G} \longrightarrow \text { Universal gravitational constant } \\
\mathrm{F} \longrightarrow \text { Gravitational force of attraction between two bodies }
\end{array}\right.
$$

6. Maximum height reached by a body thrown up:

$$
\mathrm{H}_{\max }=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}} \quad\left[\begin{array}{l}
\mathrm{u} \longrightarrow \text { initial vertical velocity } \\
\mathrm{g} \longrightarrow \text { acceleration due to gravity }
\end{array}\right.
$$

7. Combination of Resistances

Series $\longrightarrow R_{\text {eq }}=R_{1}+R_{2} \quad\left[\mathrm{R}_{\text {eq }} \longrightarrow\right.$ Equivalent Resistance Parallel $\longrightarrow R_{\text {eq }}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \quad R_{1}, R_{2} \longrightarrow \begin{array}{r}\text { Resistance of different } \\ \text { Resistors in the circuit }\end{array}$
8. Resistance

$$
\mathrm{R}=\frac{\rho \ell}{\mathrm{A}}
$$

$\left[\begin{array}{l}\ell \longrightarrow \text { Length of wire } \\ \mathrm{A} \longrightarrow \text { Cross sectional Area of wire } \\ \rho \longrightarrow \text { Resistivity (Material Property) }\end{array}\right.$
9. Heat energy developed due to flow of current through a wire

$$
\mathrm{Q}=\mathrm{I}^{2} \mathrm{Rt} \quad\left[\begin{array}{l}
\mathrm{I} \longrightarrow \text { Current flowing in circuit } \\
\mathrm{t} \longrightarrow \text { Time duration of flow of current } \\
\mathrm{R} \longrightarrow \text { Resistance } \\
\mathrm{Q} \longrightarrow \text { Heat developed }
\end{array}\right.
$$

10. Resultant Vector

$$
R=\sqrt{A^{2}+B^{2}+2 A B \cos \theta}
$$

$\left[\begin{array}{l}\overrightarrow{\mathrm{A}}, \overrightarrow{\mathrm{B}} \longrightarrow \text { Vectors } \\ \theta \longrightarrow \text { Angle between } \overrightarrow{\mathrm{A}} \text { and } \overrightarrow{\mathrm{B}}\end{array}\right.$
11. Force on moving charge in Uniform Magnetic field.

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}=\mathrm{q}(\overrightarrow{\mathrm{~V}} \times \overrightarrow{\mathrm{B}}) \\
& |\overrightarrow{\mathrm{F}}|=\mathrm{qVB} \sin \theta
\end{aligned} \quad\left[\begin{array}{l}
\mathrm{V} \longrightarrow \text { Speed of charged particle } \\
\mathrm{B} \longrightarrow \text { Magnetic field } \\
\mathrm{q} \longrightarrow \text { Charge } \\
\theta \longrightarrow \text { Angle between } \overrightarrow{\mathrm{V}} \& \overrightarrow{\mathrm{~B}}
\end{array}\right.
$$

12. Ohm's Law

$$
\mathrm{V}=\mathrm{IR}
$$

$\left[\begin{array}{l}\mathrm{V} \longrightarrow \text { Potential difference across resistor } \\ \mathrm{I} \longrightarrow \text { Current flowing through resistor } \\ \mathrm{R} \longrightarrow \text { Resistanceof resistor }\end{array}\right.$
13. Centripetal acceleration

$$
\mathrm{a}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \quad\left[\begin{array}{l}
\mathrm{V} \longrightarrow \text { Speed of particle performing circular motion } \\
\mathrm{R} \longrightarrow \text { Radius of Circle }
\end{array}\right.
$$

14. Quantity of heat

$$
\mathrm{Q}=\mathrm{ms} \Delta \mathrm{~T} \quad\left[\begin{array}{l}
\mathrm{m} \longrightarrow \text { Mass } \\
\mathrm{s} \longrightarrow \text { Specific heat capcacity } \\
\Delta \mathrm{T} \longrightarrow \text { Change in Temperature }
\end{array}\right.
$$

CHEMISTRY

Properties of solutions, colloids and suspensions :

Property	System		
	Solution	Colloid	Suspension
Particle type	Ions, atoms, small molecules	Large molecules or particles	Large particles or aggregates
Particle size	$0.1-1 \mathrm{~nm}$	$1-1000 \mathrm{~nm}$	1000 nm and large
Effect of light	No scattering	Exhibits Tyndall effect	Exhibits Tyndall effect
Effect of gravity	Stable, does not separate	Stable, does not separate	Unstable, sediment forms
Filtration	Particles not retained on filter	Particles not retained on filter	Particles retained on filter
Uniformity	Homogeneous	Heterogeneous	Heterogeneous

Types of colloids :

Dispersed phase (Solute)	Dispersing medium (Solvent)	Type	Example
Liquid	Gas	Aerosol	Fog, clouds, mist
Solid	Gas	Aerosol	Smoke, automobile exhaust
Gas	Liquid	Foam	Shaving cream
Liquid	Liquid	Emulsion	Milk, face cream
Solid	Liquid	Sol	Milk of magnesia, mud
Gas	Solid	Foam	Foam, rubber, sponge, pumice
Liquid	Solid	Gel	Jelly, cheese, butter
Solid	Solid	Solid Sol	Coloured gemstone, milky glass

Mole concept :

1. No. of mol $=\frac{\text { Given mass of entities (atom/molecule/ion) }}{\text { Molar mass }}=\frac{\text { Given no. of particles }}{\mathrm{N}_{\mathrm{A}}\left(=6.022 \times 10^{23}\right)}=\frac{\text { Given volume at STP }}{\text { Molar volume (22.4L) }}$
2. Weight of one atom $/$ molecule $=\frac{\text { Molar mass }}{N_{A}}$
3. Total no. of atoms in one mole of compound =Atomicity $\times \mathrm{N}_{\mathrm{A}}$
4. \quad Solubility $=\frac{w t . \text { of solute }}{w t . \text { of solvent }} \times 100$
5. $\quad \mathrm{w} / \mathrm{w}=\frac{\text { mass of solute }}{\text { mass of solution }} \times 100$
6. $\quad \mathrm{v} / \mathrm{v}=\frac{\text { vol.of solute }}{\text { vol.of solution }} \times 100$
7. $\operatorname{Molarity}(\mathrm{M})=\frac{\text { moles of solute }}{\text { volume of solution (in litres) }}$
8. $\quad \operatorname{Molality}(\mathrm{m})=\frac{\text { moles of solute }}{\text { mass of solvent }(\mathrm{in} \mathrm{kg})}$

Periodic properties and trends :

To find $\mathbf{p H}$ of \mathbf{A} Solution :

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \text {or } \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] ; \text {at } 25^{\circ} \mathrm{C}, \mathrm{pH}+\mathrm{pOH}=14
$$

Salts :

Common Name	Chemical Name	Chemical Formula
Baking soda	Sodium bicarbonate	NaHCO_{3}
Washing soda	Hydrated sodium carbonate	$\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
Plaster of paris	Calcium sulphate hemihydrates	$\mathrm{CaSO}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$
Bleaching powder	Calcium oxychloride	CaOCl_{2}
Gypsum	Calcium sulphate dihydrate	$\mathrm{CaSO}_{4} .2 \mathrm{H}_{2} \mathrm{O}$
Borax	Sodium tetraborate decahydrate	$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
Epsom salts	Magnesium sulphate heptahydrate	$\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
Blue vitriol	Copper sulphate pentahydrate	$\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
Green vitriol	Iron(II) sulphate heptahydrate	$\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
Hypo	Sodium thiosulphate pentahydrate	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$

Reactivity series of metals :

MINERAL NAME

Extraction process of metals :

Organic Chemistry :

MATHEMATICS

Algebra

1. $(a+b)^{2}=a^{2}+2 a b+b^{2} ; a^{2}+b^{2}=(a+b)^{2}-2 a b$
2. $(a-b)^{2}=a^{2}-2 a b+b^{2} ; a^{2}+b^{2}=(a-b)^{2}+2 a b$
3. $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
4. $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
5. $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
6. $a^{2}-b^{2}=(a+b)(a-b)$
7. $\mathrm{a}^{3}-\mathrm{b}^{3}=(\mathrm{a}-\mathrm{b})\left(\mathrm{a}^{2}+\mathrm{ab}+\mathrm{b}^{2}\right)$
8. $\mathrm{a}^{3}+\mathrm{b}^{3}=(\mathrm{a}+\mathrm{b})\left(\mathrm{a}^{2}-\mathrm{ab}+\mathrm{b}^{2}\right)$
9. $\quad a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\ldots+b^{n-1}\right)$

Def : $a^{1}=a$ and $a^{n}=a \times a \times a \times a \ldots \ldots . . n$ times. a is called the base, n is called the index or exponents and a^{n} is the $\mathrm{n}^{\text {th }}$ power of a .
10. $a^{n}=$ a.a.a.....n times
11. $a^{m} \cdot a^{n}=a^{m+n}$
12. $\frac{a^{m}}{a^{n}}=a^{m-n}, \quad a \neq 0$
13. $\quad\left(a^{m}\right)^{n}=a^{m n}=\left(a^{n}\right)^{m}$
14. $(a b)^{n}=a^{n} \cdot b^{n}$
15. $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}, b \neq 0$
16. $a^{0}=1$ where $a \in R, a \neq 0$
17. $\mathrm{a}^{-\mathrm{n}}=\frac{1}{\mathrm{a}^{\mathrm{n}}}, \mathrm{a}^{\mathrm{n}}=\frac{1}{\mathrm{a}^{-\mathrm{n}}}, \mathrm{a} \neq 0$
18. $\quad a^{p / q}=\sqrt[q]{a^{p}}$
19. If $\mathrm{a}^{\mathrm{m}}=\mathrm{a}^{\mathrm{n}}$ and $\mathrm{a} \neq \pm 1, \mathrm{a} \neq 0$ then $\mathrm{m}=\mathrm{n}$
20. If $\mathrm{a}^{\mathrm{n}}=\mathrm{b}^{\mathrm{n}}$ where $\mathrm{n} \neq 0 ; \mathrm{n}$ is even, then $\mathrm{a}= \pm \mathrm{b}$
21. If \sqrt{x}, \sqrt{y} are quadratic surds and if $a+\sqrt{x}=\sqrt{y}$, then $a=0$ and $x=y$
22. If \sqrt{x}, \sqrt{y} are quadratic surds and if $a+\sqrt{x}=b+\sqrt{y}$ then $a=b$ and $x=y$

* Logarithm

If a and n are positive real numbers, $\mathrm{a} \neq 1$ and x is a real number such that $\mathrm{a}^{\mathrm{x}}=\mathrm{n}$, then x is called the logarithm of n to the base a and we write this as $\log _{\mathrm{a}} \mathrm{n}=\mathrm{x}$
If $\mathrm{a}^{\mathrm{x}}=\mathrm{n}$, then $\log _{\mathrm{a}} \mathrm{n}=\mathrm{x} ; \mathrm{n}>0, \mathrm{a}>0, \mathrm{a} \neq 1$
i) $\quad \log _{a}(m n)=\log _{a} m+\log _{a} n$
ii) $\quad \log _{a}\left(\frac{m}{n}\right)=\log _{a} m-\log _{a} n$
iii) $\quad \log _{a} m^{n}=n \log _{a} m$
iv) $\log _{\mathrm{b}} \mathrm{a}=\frac{\log _{\mathrm{k}} \mathrm{a}}{\log _{\mathrm{k}} \mathrm{b}}$ where $\mathrm{b} \neq 1, \mathrm{k} \neq 1$,
v) $\quad \log _{b} a=\frac{1}{\log _{a} b}$ where a, b are positive real numbers, $a \neq 1, b \neq 1$
vi) If a, m, n are positive real numbers, $a \neq 1$ and if $\log _{a} m=\log _{a} n$, then $m=n$
(vii) $\log _{\mathrm{a}} 1=0$
(viii) $\log _{\mathrm{a}} \mathrm{a}=1$
(ix) $a^{\log _{a} b}=b$
(x) $a^{\log _{c} b}=b^{\log _{c} a}$

Note- 1) Standard logarithm $\log _{10}$ a
2) Natural logarithm $\log _{\mathrm{e}} \mathrm{a}=\ln \mathrm{a}$
23. The roots of the quadratic equation $a x^{2}+b x+c=0 ; a \neq 0$ are $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

The solution set of the equation is $\left\{\frac{-\mathrm{b}+\sqrt{\Delta}}{2 \mathrm{a}}, \frac{-\mathrm{b}-\sqrt{\Delta}}{2 \mathrm{a}}\right\}$
Where $\Delta=$ discriminant $=b^{2}-4 \mathrm{ac}$
24. The roots are real and distinct if $\Delta>0$
25. The roots are real and equal if $\Delta=0$
26. The roots are non-real if $\Delta<0$
27. If α and β are the roots of the equation $a^{2}+b x+c=0, a \neq 0$ then
(i) $\quad \alpha+\beta=\frac{-b}{a}=-\frac{\text { coeff. of } \mathrm{x}}{\text { coeff.of } \mathrm{x}^{2}}$
$\alpha \cdot \beta=\frac{c}{a}=\frac{\text { Constant term }}{\text { coeff.of } x^{2}}$
28. The quadratic equation whose roots are α and β is $(x-\alpha)(x-\beta)=0$
(i) i.e., $x^{2}-(\alpha+\beta) x+\alpha \beta=0$
(ii) i.e., $\mathrm{x}^{2}-\mathrm{Sx}+\mathrm{P}=0$ where $\mathrm{S}=\mathrm{Sum}$ of the roots and $\mathrm{P}=$ Product of the roots.
29. For an arithmetic progression (A.P.) whose first term is 'a' and common difference is ' d '.
(i) $\mathrm{n}^{\text {th }}$ term $=\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
(ii) The sum of the first ' n ' terms $=S_{n}=\frac{n}{2}(a+\ell)=\frac{n}{2}\{2 a+(n-1) d\}$

Where $\ell=$ last term $=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$.
30. For a geometric progression (G.P.) whose first term is ' a ' and common ratio is ' r ' .
(i) $\mathrm{n}^{\text {th }}$ term $=\mathrm{t}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
(ii) The sum of the first ' n ' terms:

$$
\begin{array}{rlrl}
S_{n} & =\frac{a\left(1-r^{n}\right)}{1-r} & & \text { if } r<1 \\
& =\frac{a\left(r^{n}-1\right)}{r-1} & & \text { if } r>1 \\
& =n a & \text { if } r=1
\end{array}
$$

(iii)

$$
\mathrm{S}_{\infty}=\frac{\mathrm{a}}{1-\mathrm{r}},|\mathrm{r}|<1
$$

31. For any sequence $\left\{t_{n}\right\}, S_{n}-S_{n-1}=t_{n}$ where $S_{n}=$ Sum of the first ' n ' terms.
32. $\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}=1+2+3+\ldots+\mathrm{n}=\frac{\mathrm{n}}{2}(\mathrm{n}+1)$.
33. $\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{2}=1^{2}+2^{2}+3^{2}+\ldots+\mathrm{n}^{2}=\frac{\mathrm{n}}{6}(\mathrm{n}+1)(2 \mathrm{n}+1)$
34. $\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{3}=1^{3}+2^{3}+3^{3}+4^{3}+\ldots+\mathrm{n}^{3}=\frac{\mathrm{n}^{2}}{4}(\mathrm{n}+1)^{2}=\left\{\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right\}^{2}$
35. $n!=1 \cdot 2.3 .4 \ldots \ldots . .(n-1) . n$
36. $n!=n(n-1)!=n(n-1)(n-2)!=\ldots \ldots$
37. $0!=1$
38. $(a+b)^{n}=a^{n}+n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2}+\frac{n(n-1)(n-2)}{3!} a^{n-3} b^{3}+\ldots .+b^{n}, n>1$
39. Area of rectangle $=\ell \times \mathrm{b}$

Perimeter of rectangle $=2(\ell+b)$
Diagonal $(d)=\sqrt{\ell^{2}+b^{2}}$

40. \quad Area of square $=(\text { side })^{2}$

Perimeter of square $=4 \times$ side
Diagonal of square $=\sqrt{2} \times$ side

41. Area of parallelogram $=$ Base \times height

Perimeter of parallelogram $=2$ (sum of two adjacent sides)

42. Trapezium:

Area of trapezium $=\frac{1}{2}($ sum of parallel sides $) \times$ height

43. Area of rhombus $=\frac{1}{2} \times$ product of its diagonals

$$
=\frac{1}{2} \times \mathrm{d}_{1} \times \mathrm{d}_{2}
$$

Note : side of rhombus $=\frac{\sqrt{\mathrm{d}_{1}{ }^{2}+\mathrm{d}_{2}{ }^{2}}}{2}$

Where d_{1} is p and d_{2} is q .
44. Area of quadrilateral ABCD
$=\frac{1}{2} \times\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right) \mathrm{AC}$

$=\frac{1}{2} \times$ sum of perpendiculars on the diagonal from the opposite vertices \times Diagonal
45. Area of triangle:

$$
\begin{aligned}
& \text { Perimeter }=\mathrm{a}+\mathrm{b}+\mathrm{c} \\
& \text { Area of triangle }=\frac{1}{2} \sqrt{\mathrm{~s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})} \\
& \text { where } \mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}
\end{aligned}
$$

This formula is called heron's formula
46. Area of right angled triangle
$=\frac{1}{2} \mathrm{AB} \times \mathrm{BC}$
A $=\frac{1}{2} \times$ Base \times Height
Perimeter of right angled

Triangle $=$ Base + height + hypotenuse
47. The Pythagorean equation:
$(\text { length of base })^{2}+(\text { length of height })^{2}=(\text { length of hypotenuse })^{2}$
$\therefore \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
48. Equilateral triangle

Area of equilateral triangle
$=\frac{\sqrt{3}}{4} \times(\text { side })^{2}$
Perimeter $=3 \times$ side

49. Area of isosceles triangle

$$
=\frac{\mathrm{b}}{4} \sqrt{4 \mathrm{a}^{2}-\mathrm{b}^{2}}
$$

50. Area (of circle with radius r) $=\pi r^{2}$

Perimeter (circumference) of circle $=2 \pi r$
Where $\pi=\frac{22}{7}$ or 3.14
Note : π is an irrational number

Area of semi-circle $=\frac{\pi \mathrm{r}^{2}}{2}$
Circumference of semi-circle $=\pi r+d$
Where $\mathrm{d}=$ diameter of circle
Cuboid :
Lateral surface area

$$
=\text { Base perimeter } \times \text { Height }
$$

$$
=2(\ell+\mathrm{b}) \times \mathrm{hsq} \text {. unit }
$$

Total surface area $=2(\ell b+b h+h \ell)$
Volume $=$ Base area \times Height

$$
=\ell \times b \times h
$$

51. Length of arc (ℓ) with angle $\theta=\frac{\theta}{360^{\circ}} \times 2 \pi \mathrm{r}$
52. Area of sector with angle $\theta=\frac{\theta}{360^{\circ}} \times \pi \mathrm{r}^{2}$
53. Perimeter of sector $=\frac{\theta}{360^{\circ}} \times 2 \pi r+2 \mathrm{r}$

Name of the Solid	Figure	Lateral/ Curved Surface Area	Total Surface Area	Volume
Cube				
Cuboid				

54. Total surface area of sphere $=4 \pi r^{2}$

Volume $=\frac{4}{3} \pi r^{3}$
Curved surface area of Hemi-sphere $=2 \pi \mathrm{r}^{2}$
Total surface area $=3 \pi \mathrm{r}^{2}$
Volume of Hemi-sphere $=\frac{2}{3} \pi r^{3}$
55. i) Volume of the frustum of the cone $=\frac{1}{3} \pi h\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}{ }^{2}+\mathrm{r}_{1} \mathrm{r}_{2}\right)$
ii) The curved surface area of the frustum of the cone $=\pi\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) \ell$ where $\ell=\sqrt{\mathrm{h}^{2}+\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)^{2}}$
iii) Total surface area of the frustum of the cone $=\pi \ell\left(r_{1}+r_{2}\right)+\pi r_{1}^{2}+\pi r_{2}^{2}$, where $\ell=\sqrt{\mathrm{h}^{2}+\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)^{2}}$

FORMULAS/EQUATIONS

Distance between two points $\mathrm{d}=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}$ where $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are two points in a coordinate plane
Slope of a line : $\mathrm{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}$ where $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are two points on a coordinate plane
Point-Slope Equation of a line : $y-y_{1}=m\left(x-x_{1}\right)$ where m is the slope and the point $\left(x_{1}, y_{1}\right)$
Slope-Intercept Equation of a line : $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ where m is the slope and c is the y -intercept
Standard Equation of a circle $:(x-h)^{2}+(y-k)^{2}=r^{2}$ where r is the radius and center at (h, k)

Trigonometric Formula Sheet \& Definition of the Trig Functions

Right Angled Triangle Definition

Assume that :
$0<\theta<\frac{\pi}{2}$ or $0^{\circ}<\theta<90^{\circ}$
$\sin \theta=\frac{\text { opp }}{\text { hyp }} \quad \operatorname{cosec} \theta=\frac{\text { hyp }}{\text { opp }}$
$\cos \theta=\frac{\text { adj }}{\text { hyp }} \quad \sec \theta=\frac{\text { hyp }}{\text { adj }}$

$\tan \theta=\frac{\text { opp }}{\text { adj }} \quad \cot \theta=\frac{\text { adj }}{\text { opp }}$

Remarks :

(i) In the first quadrant all trigonometric ratios are positive
(ii) In the $2^{\text {nd }}$ quadrant, $\sin \mathrm{x}$ and its reciprocal $(\operatorname{cosec} \mathrm{x})$ are positive and rest are negative.
(iii) In the $3^{\text {rd }}$ quadrant, $\tan \mathrm{x}$ and its reciprocal $(\cot \mathrm{x})$ are positive and rest are negative.
(iv) In the $4^{\text {th }}$ quadrant. $\cos \mathrm{x}$ and $\sec \mathrm{x}$ are positive and rest are negative.

Trigonometric Identities and Formulas

Tangent and cotangent identities

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Reciprocal identities

$\sin \theta=\frac{1}{\operatorname{cosec} \theta} \quad \operatorname{cosec} \theta=\frac{1}{\sin \theta}$
$\cos \theta=\frac{1}{\sec \theta} \quad \sec \theta=\frac{1}{\cos \theta}$
$\tan \theta=\frac{1}{\cot \theta} \quad \cot \theta=\frac{1}{\tan \theta}$

Trigonometric identities

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \tan ^{2} \theta+1=\sec ^{2} \theta \\
& 1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta
\end{aligned}
$$

Degrees to Radians Formulae

If x is an angle in degrees and t is an angle in radians then:
$\frac{\pi}{180^{\circ}}=\frac{\mathrm{t}}{\mathrm{x}} \Rightarrow \mathrm{t}=\frac{\pi \mathrm{x}}{180^{\circ}}$ and $\mathrm{x}=\frac{180^{\circ} \mathrm{t}}{\pi}$

Sum and Difference Formulas

$$
\begin{aligned}
& \sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
& \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
& \tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}
\end{aligned}
$$

Double Angle formulae

$$
\sin 2 \theta=2 \sin \theta \cos \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}
$$

$$
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}
$$

$$
\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}
$$

BIOLOGY

STRUCTURE OF THE BRAIN	BRAIN PARTS \& ITS FUNCTIONS
STRUCTURE OF THE EYE	
STRUCTURE OF THE HEART	STRUCTURE OF THE NEPHRON

Scholarship Cum Entrance Test Sample Questions

1. The least perfect square, which is divisible by each of 21,36 and 66 is:
(A) 213444
(B) 214344
(C) 214434
(D) 231444
2. Ayesha's father was 38 years of age when she was born while her mother was 36 years old when her brother four years younger to her was. What is the difference between the ages of her parents?
(A) 2 years
(B) 4 years
(C) 6 years
(D) 8 years
3. A library has an average of 510 visitors on Sundays and 240 on other days. The average number of visitors per day in a month of 30 days beginning with a Sunday is:
(A) 250
(B) 276
(C) 280
(D) 285
4. If $\sqrt{x-1}-\sqrt{x+1}+1=0$, then $4 x$ equals:
(A) 5
(B) $4 \sqrt{-1}$
(C) 0
(D) no real value
5. When simplified, $\left(\mathrm{x}^{-1}+\mathrm{y}^{-1}\right)^{-1}$ is equal to:
(A) $x+y$
(B) $\frac{x y}{x+y}$
(C) $x y$
(D) $\frac{1}{x y}$
6. The fraction $\frac{\mathrm{a}^{-4}-\mathrm{b}^{-4}}{\mathrm{a}^{-2}-\mathrm{b}^{-2}}$ is equal to:
(A) $a^{-6}-b^{-6}$
(B) $a^{-2}-b^{-2}$
(C) $a^{-2}+b^{-2}$
(D) $a^{2}+b^{2}$
7. If $8.2^{\mathrm{x}}=5^{\mathrm{y}+8}$, then, when $\mathrm{y}=-8, \mathrm{x}=$
(A) -4
(B) -3
(C) 0
(D) 4
8. The value of $x-y^{x-y}$ when $x=2$ and $y=-2$ is:
(A) -18
(B) -14
(C) 14
(D) 18
9. Of the following expressions the one equal to $\frac{a^{-1} b^{-1}}{a^{-3}-b^{-3}}$ is:
(A) $\frac{a^{2} b^{2}}{b^{2}-a^{2}}$
(B) $\frac{a^{2} b^{2}}{b^{3}-a^{3}}$
(C) $\frac{a b}{b^{3}-a^{3}}$
(D) $\frac{a^{3}-b^{3}}{a b}$
10. $\operatorname{If}\left(r+\frac{1}{r}\right)^{2}=3$ then $r^{3}+\frac{1}{r^{3}}$ equals
(A) 1
(B) 2
(C) 0
(D) 6

For Scholarship Cum Entrance Test Sample Papers : Log on : www.iitianspace.com

