

Ans : d) $\frac{40}{3} \mathrm{~cm}$
10. In given figure, $C P$ and $C Q$ are tangents to a circle with centre $O$. ARB is another tangent touching the circle at $R$. If $C P=11 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$ then the length of $B R$ is


Ans : b) 5 cm
11. If $\sin A+\sin ^{2} A=1$, then

$$
\cos ^{2} A+\cos ^{4} A=?
$$

Ans : a) 1
12. If a pole 6 m high casts a shadow $2 \sqrt{3} \mathbf{m}$ long on the ground, then the sun's elevation is

Ans : a) $60^{\circ}$
13. If $\sec \theta+\tan \theta=x$, then $\tan \theta$ is:

Ans : a) $\frac{\left(x^{2}-1\right)}{2 x}$
14. If the sum of the circumferences of two circles with radii $R_{1}$ and $R_{2}$ is equal to the circumference of a circle of radius $R$, then :

Ans : a) $\mathrm{R}_{1}+\mathrm{R}_{2}=\mathrm{R}$
15. The diameter of a sphere is $\mathbf{6} \mathbf{~ c m}$. then find its total surface area.

Ans : c) $36 \pi \mathrm{~cm}^{2}$
16. One of the method for determining mode is

Ans : b) Mode $=3$ Median -2 Mean
17. Which of the following cannot be the probability of an event?

Ans : d) $\frac{17}{16}$
18. The probability of getting a consonant
from the word MAHIR is
Ans : b) $\frac{3}{5}$
Direction : In the question number 19 and 20, a statement of Assertion (A) is followed by a statement of Reason ( $R$ ). Choose the correct option.
19. Assertion: If one root of the quadratic equation $6 x^{2}-x-k=0$ is $\frac{2}{3}$, then the value of $k$ is 2 .
Reason: The quadratic equation $a x^{2}+b x+c=0, a \neq 0$ has almost two roots.

Ans : b) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
20. Assertion: Perimeter of a semi circle is $(\pi r+d)$ units.

Reason: Area of circle is $\left(\pi r^{2}\right)$
Ans : b) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.

## SECTION B

Section $B$ consists of 5 questions of 2 marks each.
21. Prove that $\sqrt{5}$ is irrational.

Ans : Letus prove $\sqrt{5}$ irrational by contradiction.
Let us suppose that $\sqrt{5}$ is rational. It means that we have co-prime integers $a$ and $b$
$(b \neq 0)$ such that $\sqrt{5}=\frac{a}{b}$
$\Rightarrow \mathrm{b} \sqrt{5}=\mathrm{a}$
Squaring both sides, we get
$\Rightarrow \sqrt{5} \mathrm{~b}^{2}=\mathrm{a}^{2}$
It means that 5 is factor of $a^{2}$

Hence, 5 is also factor of a by Theorem.

If, 5 is factor of a, it means that we can write $\mathrm{a}=5 \mathrm{c}$ for some integer c .
Substituting value of a in (1),
$5 b^{2}=25 \mathrm{c}^{2}$
$\Rightarrow b^{2}=5 c^{2}$
It means that 5 is factor of $b^{2}$.
Hence, 5 is also factor of $b$ by Theorem.

From (2) and (3), we can say that 5 is factor of both $a$ and $b$.

But, a and b are co-prime.
Therefore, our assumption was wrong. $\sqrt{5}$ cannot be rational. Hence, it is irrational.
22. $X$ and $Y$ are points on the sides $A B$ and $A C$ respectively of a triangle $A B C$ such that $A X: A B=1: 4, A Y=2 \mathrm{~cm}$ and $Y C=$ 6 cm . Find whether $X Y|\mid B C$ or not.
Ans : Given: $\mathrm{AX}: \mathrm{AB}=1: 4$


Let $A X=1 K, A B=4 K$
$\therefore \mathrm{BX}=\mathrm{AB}-\mathrm{AX}$
$=4 \mathrm{~K}-1 \mathrm{~K}$
$=3 \mathrm{~K}$
$\frac{\mathrm{AX}}{\mathrm{XB}}=\frac{1 \mathrm{~K}}{3 \mathrm{~K}}=\frac{1}{3}$
$\frac{\mathrm{A} \mathrm{X}}{\mathrm{X} \mathrm{B}}=\frac{1}{3}$
$\therefore \frac{\mathrm{AX}}{\mathrm{XB}}=\frac{\mathrm{AY}}{\mathrm{YC}}=\frac{1}{3}$
$\therefore \mathrm{XY} \| \mathrm{BC} \ldots[$ By converse of Thales' theorem]
23. A quadrilateral ABCD is drawn to circumscribe a circle (see figure). Prove that: $\mathbf{A B}+\mathbf{C D}=\mathbf{A D}+\mathbf{B C}$


Ans : We know that the tangents from an external point to a circle are equal.
$\therefore \mathrm{AP}=\mathrm{AS}$ $\qquad$
$B P=B Q$ $\qquad$
$C R=C Q$ $\qquad$
DR = DS $\qquad$
On adding eq. (i), (ii), (iii) and (iv), we get
$(\mathrm{AP}+\mathrm{BP})+(\mathrm{CR}+\mathrm{DR})$
$=(\mathrm{AS}+\mathrm{BQ})+(\mathrm{CQ}+\mathrm{DS})$
$\Rightarrow \mathrm{AB}+\mathrm{CD}=(\mathrm{AS}+\mathrm{DS})+(\mathrm{BQ}+\mathrm{CQ})$
$\Rightarrow \mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}$
24. $\quad \sin (\mathrm{A}+\mathrm{B})=1$ and $\sin (\mathrm{A}-\mathrm{B})=\frac{1}{2}$;
$\left.0^{\circ}<(\mathrm{A}+\mathrm{B}) \leq 90^{\circ}\right) ;(\angle \mathrm{A}>\angle \mathrm{B})$. Find
$\angle \mathrm{A}$ and $\angle \mathrm{B}$.
Ans : Given Data
$\sin (A+B)=1$
$\sin (\mathrm{A}-\mathrm{B})=\frac{1}{2}$
$0^{0}<\mathrm{A}+\mathrm{B} \leq 90^{\circ}$
$\angle \mathrm{A}>\angle \mathrm{B}$
Compute A and B using $\sin (\mathrm{A}+\mathrm{B})$ and
$\sin (A-B)$
$\sin (A+B)=1$
We know $\sin 90^{\circ}=1$
$\therefore \sin (\mathrm{A}+\mathrm{B})=\sin 90^{\circ}$
$\mathrm{A}+\mathrm{B}=90^{\circ}$
$\sin (A-B)=\frac{1}{2}$
We know $\sin 30^{\circ}=\frac{1}{2}$
$\therefore \sin (A-B)=\sin 30^{\circ}$
$\mathrm{A}-\mathrm{B}=30^{\circ}$.
Solve Equations (1) and (2) to Find A and B
Add equations (1) and (2):
$(\mathrm{A}+\mathrm{B})+(\mathrm{A}-\mathrm{B})=90^{\circ}+30^{\circ}$
$2 \mathrm{~A}=120^{\circ}$ or $\mathrm{A}=60^{\circ}$
Substitute $A=60^{\circ}$ in equation 1
$60^{\circ}+B=90^{\circ}$
Or $B=90^{\circ}-60^{\circ} \Rightarrow B=30^{\circ}$
So, $\angle \mathrm{A}=60^{\circ}$ and $\angle \mathrm{B}=30^{\circ}$

## OR

If $\sin \theta+\cos \theta=\sqrt{3}$, then prove that $\boldsymbol{\operatorname { t a n }} \boldsymbol{\operatorname { t a n }} \theta+\boldsymbol{\operatorname { c o t }} \theta=1$.

Ans : Given,
$\sin \theta+\cos \theta=\sqrt{3}$
Squaring on both sides,
$(\sin \theta+\cos \theta)^{2}=(\sqrt{3})^{2}$
$\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=3$
Using the identity $\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1$,
$1+2 \sin \theta \cos \theta=3$
$2 \sin \theta \cos \theta=3-1$
$2 \sin \theta \cos \theta=2$
$\sin \theta \cos \theta=1$
$\sin \theta \cos \theta=\sin ^{2} \theta+\cos ^{2} \theta$
$\Rightarrow \frac{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}{(\sin \theta \cos \theta)}=1$
$\Rightarrow\left[\frac{\sin ^{2} \theta}{(\sin \theta \cos \theta)}\right]+\left[\frac{\cos ^{2} \theta}{(\sin \theta \cos \theta)}\right]=1$

$$
\begin{aligned}
& \Rightarrow\left(\frac{\sin \theta}{\cos \theta}\right)+\left(\frac{\cos \theta}{\sin \theta}\right)=1 \\
& \Rightarrow \tan \theta+\cot \theta=1
\end{aligned}
$$

Hence proved
25. In Figure, find the area of the shaded region.


Ans : Area of shaded region


## SECTION C

## Section C consists of 6 questions of 3 marks each.

26. The length, breadth, and height of a room are $8 \mathrm{~m} 50 \mathrm{~cm}, 6 \mathrm{~m} 25 \mathrm{~cm}$ and 4 m 75 cm respectively. Find the length of the longest rod that can measure the dimensions of the room exactly.
Ans : To find the length of the longest rod that can measure the dimensions of the room exactly, we have to find HCF.

Length $(\mathrm{L})=8 \mathrm{~m} 50 \mathrm{~cm}=850 \mathrm{~cm}$
$=2^{1} \times 5^{2} \times 17$
Breadth $(\mathrm{B})=6 \mathrm{~m} 25 \mathrm{~cm}=625 \mathrm{~cm}=5^{4}$
Height $(\mathrm{H})=4 \mathrm{~m} 75 \mathrm{~cm}=475 \mathrm{~cm}$
$=5^{2} \times 19$
HCF of $\mathrm{L}, \mathrm{B}$ and H is $5^{2}=25 \mathrm{~cm}$
Length of the longest rod $=25 \mathrm{~cm}$
27. Three alarm clocks ring at intervals of 4,12 and 20 minutes respectively. If they start ringing together, after how much time will they next ring together?
Ans : To find the time when the clocks will next ring together,
we have to find LCM of 4, 12 and 20 minutes.
$4=2^{2}$
$12=2^{2} \times 3$
$20=2^{2} \times 5$

| 2 | 12 |
| :---: | :---: |
| 2 | 6 |
|  | 3 |$\quad$| 2 | 20 |
| :--- | :--- |
| 2 | 10 |
|  | 5 |

LCM of 4,12 and $20=2^{2} \times 3 \times 5=60$ minutes.

So, the clocks will ring together again after 60 minutes or one hour.
28. A and $B$ each have a certain number of oranges. A says to B, "if you give me 10 of your oranges, I will have twice the number of oranges left with you." B replies," if you give me $\mathbf{1 0}$ of your oranges, I will have the same number of oranges as left with you. Find the number of oranges with $A$ and $B$ separately.
Ans : Suppose A has x number of oranges and B has y oranges. Then
$\mathrm{x}+10=2(\mathrm{y}-10)$
$\Rightarrow \mathrm{x}-2 \mathrm{y}+30=0$
$y+10=x-10$
$\Rightarrow \quad \mathrm{x}-\mathrm{y}-20=0$

Equating both the equations we get $\mathrm{y}=50$ and $\mathrm{x}=70$

Hence A has 70 oranges and B has 50 oranges

## OR

Yash scored 40 marks in a test, receiving 3 marks for each correct answer and losing 1 mark for each wrong answer. Had 4 marks been awarded for each correct answer and 2 marks been deducted for each wrong answer, then Yash would have scored 50 marks. How many questions were there in the test?

Ans : Let right answer questions attempt by Yash be x and wrong answer questions be y

Then, $3 \mathrm{x}-\mathrm{y}=40$. $\qquad$
$4 \mathrm{x}-2 \mathrm{y}=50$
Solving we get $\mathrm{x}=15, \mathrm{y}=5$
Total number of questions in the test

$$
=x+y=15+5=20
$$

29. In the figure, a circle is inscribed in a triangle $P Q R$ with $P Q=10 \mathrm{~cm}, Q R=8$ cm and $P R=12 \mathrm{~cm}$. Find the lengths of QM, RN and PL.


Ans: Let $\mathrm{PL}=\mathrm{PN}=\mathrm{xcm}$
$\mathrm{QL}=\mathrm{QM}=\mathrm{ycm}$
$\mathrm{RN}=\mathrm{MR}=\mathrm{zcm}$
$P Q=10 \mathrm{~cm}=x+y=10$
$\mathrm{QR}=8 \mathrm{~cm}=\mathrm{y}+\mathrm{z}=8 \ldots$ (ii)
$\mathrm{PR}=12 \mathrm{~cm}=\mathrm{x}+\mathrm{z}=12 \ldots$ (iii)
By adding (i), (ii) and (iii),


We get,
$\Rightarrow 2 \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}=10+8+12$
$\Rightarrow 2(\mathrm{x}+\mathrm{y}+\mathrm{z})=30$
$\Rightarrow \mathrm{x}+\mathrm{y}+\mathrm{z}=15$
$\Rightarrow 10+\mathrm{z}=15 \ldots$ [From (i)
$\therefore \mathrm{z}=15-10=5 \mathrm{~cm}$
From(ii)
$y+5=8$
$y=8-5$
$\mathrm{y}=3 \mathrm{~cm}$
From(iii)
$\mathrm{x}+5=12$
$\mathrm{x}=12-5$
$\mathrm{x}=7 \mathrm{~cm}$
$\therefore \mathrm{QM}=3 \mathrm{~cm}, \mathrm{RN}=5 \mathrm{~cm}, \mathrm{PL}=7 \mathrm{~cm}$.

## OR

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Ans : To prove : i) $\angle \mathrm{AOD}+\angle \mathrm{BOC}=180^{\circ}$
ii) $\angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}$

Proof: In $\triangle \mathrm{BPO}$ and $\triangle \mathrm{BQO}$
...[Tangents drawn from an external point are equal


$$
\begin{array}{ll}
\mathrm{PO}=\mathrm{QO} & \ldots \text { [radii of same circle }] \\
\mathrm{BO}=\mathrm{BO} & \ldots[\text { Common }]
\end{array}
$$

$\Delta \mathrm{BPO} \cong \Delta \mathrm{BQO} \ldots$ [SSS Congruency rule] $\angle 8=\angle 1 \quad$...(1) (c.p.c.t.)
Similarly,

$$
\begin{aligned}
& \angle 2=\angle 3, \angle 4=\angle 5 \text { and } \angle 6=\angle 7 \ldots(2) \\
& \angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8 \\
& =360^{\circ} \quad \ldots \text { (Complete angles) } \\
& \angle 1+\angle 2+\angle 2+\angle 5+\angle 5+\angle 6+\angle 6+\angle 1 \\
& =360^{\circ} \quad \ldots .[\text { from (1) and (2)] } \\
& \Rightarrow 2(\angle 1+\angle 2+\angle 5+\angle 6)=360^{\circ} \\
& \Rightarrow \angle \mathrm{BOC}+\angle \mathrm{AOD}=180^{\circ}
\end{aligned}
$$

...(3) [Proved part I

$$
\angle \mathrm{AOB}+\angle \mathrm{BOC}+\angle \mathrm{COD}+\angle \mathrm{DOA}
$$

$$
=360^{\circ} \quad \ldots \text { (Complete angles) }
$$

$$
\angle \mathrm{AOB}+\angle \mathrm{COD}+180^{\circ}=360^{\circ}
$$

$$
\ldots[\text { From (3) }
$$

$$
\begin{equation*}
\angle \mathrm{AOB}+\angle \mathrm{COD}=360^{\circ}-180^{\circ}=180^{\circ} \tag{proved}
\end{equation*}
$$

## 30. Prove that:

$$
\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}+\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{2}{2 \sin ^{2} \theta-1}
$$

Ans : L.H.S. $=\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}+\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}$

$$
=\frac{(\sin \theta-\cos \theta)^{2}+(\sin \theta+\cos \theta)^{2}}{(\sin \theta+\cos \theta)(\sin \theta-\cos \theta)}
$$

$\underline{\sin ^{2} \theta+\cos ^{2} \theta-2 \cos \theta \sin \theta+\sin ^{2} \theta+\cos ^{2} \theta+2 \cos \theta \sin \theta}$

$$
\begin{gathered}
=\frac{1+1}{\sin ^{2} \theta-\left(1-\sin ^{2} \theta\right)}=\frac{2}{\sin ^{2} \theta-1+\sin ^{2} \theta} \\
\quad=\frac{2}{2 \sin ^{2} \theta-1}=\text { R.H.S. ...(Hence proved) }
\end{gathered}
$$

31. If the mean of the following distribution
is 50 , find the value of $p$ :

| Class | Frequency |
| :---: | :---: |
| $0-20$ | 17 |
| $20-40$ | p |
| $40-60$ | 32 |
| $60-80$ | 24 |
| $80-100$ | 19 |

Ans :

| Class | Frequency <br> $\left(\mathbf{f}_{\mathbf{i}}\right)$ | $\mathbf{x}_{\mathbf{i}}$ | $\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$ |
| :---: | :---: | :---: | :---: |
| $0-2$ | 17 | 10 | 170 |
| $20-40$ | p | 30 | 30 p |
| $40-60$ | 32 | 50 | 1600 |
| $60-80$ | 24 | 70 | 1680 |
| $80-100$ | 19 | 90 | 1710 |
|  | $\sum \mathrm{f}_{\mathrm{i}}=92+\mathrm{p}$ |  | $\sum \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=$ |
|  |  |  |  |

$$
\begin{aligned}
& \therefore \text { Mean }=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}} \\
& 50=\frac{5160+30 \mathrm{p}}{92+\mathrm{p}} \\
& \Rightarrow \quad 4600+50 \mathrm{P}=5160+30 \mathrm{P} \\
& \Rightarrow \quad 50 \mathrm{P}-30 \mathrm{P}=5160-4600 \\
& \Rightarrow \quad 20 \mathrm{P}=560 \\
& \Rightarrow \quad \mathrm{p}=\frac{560}{20}=28 \quad \therefore \mathrm{P}=28 .
\end{aligned}
$$

## SECTION D

## Section $D$ consists of 4 questions of

 5 marks each.32. Due to heavy floods in a State, thousands were rendered homeless. 50 schools collectively offered to the State Government to provide place and the canvas for 1,500 tents to be fixed by
the Government and decided to share the whole expenditure equally. The lower part of each tent is cylindrical of base radius 2.8 m and height 3.5 m , with conical upper part of same base radius but of height 2.1 m . If the canvas used to make the tents costs $₹ \mathbf{1 2 0}$ per sq. m , find the amount shared by 'each school to set up the tents.

Ans :


Let $r$ and $h$ be the radius and height of cylindrical part respectively and 1 be the slant height of conical part.
Slant height of conical part (1), $=\sqrt{(2.1)^{2}+(2.8)^{2}} \quad \ldots[$ By Pythagoras'
theorem
$\therefore l=\sqrt{4.41+7.84}=\sqrt{12.25}=3.5 \mathrm{~m}$
Area of Canvas / tent
= C.S. area of cylindrical part + C.S. area of conical part

$$
=2 \pi \mathrm{rh}+\pi \mathrm{rl}
$$

$$
[\because \mathrm{r}=2.8 \mathrm{~m}, \mathrm{~h}=3.5 \mathrm{~m}, l=3.5 \mathrm{~m}
$$

$$
=\pi \mathrm{r}(2 \mathrm{~h}+l)
$$

$$
=\frac{22}{7} \times 2.8[2(3.5)+3.5]
$$

$$
=22 \times 0.4(7.0+3.5)
$$

$$
=8.8(10.5)=92.4 \mathrm{~m}^{2}
$$

area of canvas for 1,500 tents

$$
=(92.4 \times 1,500) \mathrm{m}^{2}
$$

$=1,38,600 \mathrm{~m}^{2}$
Cost of 1,500 tents at $₹ 120$ per m ${ }^{2}$
$=1,38,600 \times ₹ 120$ per m${ }^{2}$
$=₹ 1,66,32,000$
Share of each school $=\frac{\text { Total Cost }}{\text { No. of Schools }}$
$=\frac{₹ 1,66,32,000}{50}=₹ 3,32,640$

## OR

A solid is in the shape of a cone standing on a hemisphere with both their radii being equal to 7 cm and the height of the cone is equal to its diameter. Find the volume of the solid. [Use $\pi=227$ )
Ans : Radius, $\mathrm{r}=7 \mathrm{~cm}$
Height of cone, $\mathrm{h}=2(7)=14 \mathrm{~cm}$
Volume of solid $=$ Vol. of hemisphere + Volume of cone

$=\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \pi r^{2}(2 r+h)$
$=\frac{1}{3} \times \frac{22}{7} \times 7 \times 7(2(7)+14)$
$=\frac{22 \times 7}{3} \times 28=\frac{4312}{3}$
$=1437 . \overline{3} \mathrm{~cm}^{3}$.
33. In the figure, $\angle \mathrm{BED}=\angle \mathrm{BDE} \& \mathbf{E}$ divides BC in the ratio $2: 1$.
Prove that $\mathrm{AF} \times \mathrm{BE}=2 \mathrm{AD} \times \mathrm{CF}$.


Ans: Construction: Draw CG $\|$ DF Proof: E divides

BC in $2: 1$.
$\mathrm{BE}: \mathrm{EC}=2: 1$


Proof: $\angle \mathrm{BED}=\angle \mathrm{BDE} \quad$...[Given
$\mathrm{BD}=\mathrm{BE} \quad$...(ii)
..[Sides opposite to equal angles
In $\triangle \mathrm{CBG}, \mathrm{DE} \| \mathrm{CG} . . .[$ By construction

$$
\begin{align*}
& \Rightarrow \frac{\mathrm{BD}}{\mathrm{DG}}=\frac{\mathrm{BE}}{\mathrm{EC}} \\
& \text {...[Thales' theorem } \\
& \Rightarrow \frac{\mathrm{BD}}{\mathrm{DG}}=\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{2}{1} \\
& \Rightarrow \frac{\mathrm{BD}}{\mathrm{DG}}=\frac{2}{1} \\
& 2 \mathrm{DG}=\mathrm{BD} \\
& 2 \mathrm{DG}=\mathrm{BE} \\
& \Rightarrow \mathrm{DG}=\frac{1}{2} \mathrm{BE} \tag{iii}
\end{align*}
$$

In $\triangle \mathrm{ADF}, \mathrm{CG}| | \mathrm{DF}$...[By construction
$\Rightarrow \frac{\mathrm{AG}}{\mathrm{GD}}=\frac{\mathrm{AC}}{\mathrm{CF}} \quad \ldots[$ Thales' theorem
$\Rightarrow \frac{\mathrm{AG}}{\mathrm{GD}}+1=\frac{\mathrm{AC}}{\mathrm{CF}}+1$
...[Adding one on both sides
$\Rightarrow \frac{\mathrm{AG}+\mathrm{GD}}{\mathrm{GD}}=\frac{\mathrm{AC}+\mathrm{CF}}{\mathrm{CF}}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{GD}}=\frac{\mathrm{AF}}{\mathrm{CF}}$
$\Rightarrow \mathrm{AF} \times \mathrm{GD}=\mathrm{AD} \times \mathrm{CF}$
$\Rightarrow \mathrm{AF} \times \frac{\mathrm{BE}}{2}=\mathrm{AD} \times \mathrm{CF}$
$\therefore \mathrm{AF} \times \mathrm{BE}=2 \mathrm{AD} \times \mathrm{CF}$ (Hence proved).
34. A train travels at a certain average speed for a distance of 54 km and then travels a distance of $63 \mathbf{k m}$ at an average speed of
$6 \mathrm{~km} / \mathrm{h}$ more than the first speed. If it takes 3 hours to complete the total journey, what is its first speed?

Ans : Let the original average speed of(first) train be $\mathrm{xm} / \mathrm{hr}$.

Now, new speed will be $=(x+6) \mathrm{km} / \mathrm{hr}$.
We know,

$$
\begin{aligned}
& \frac{54}{x}+\frac{63}{x+6}=3 \\
& \Rightarrow \frac{54(x+6)+63(x)}{x(x+6)}=3 \\
& \Rightarrow \frac{54 x+324++63 x}{x(x+6)}=3 \\
& \Rightarrow 54 x+324+63 x=3 x(x+6) \\
& \Rightarrow 117 x+324=3 x^{2}+18 x \\
& \Rightarrow 3 x^{2}+18 x-117 x-324=0 \\
& \Rightarrow 3 x^{2}-99 x-324=0 \\
& \Rightarrow x^{2}-33 x-108=0
\end{aligned}
$$

$\Rightarrow \mathrm{x}^{2}-36 \mathrm{x}+3 \mathrm{x}-108=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-36)+3(\mathrm{x}-36)=0$
$\Rightarrow(\mathrm{x}-36)(\mathrm{x}+3)=0$
$\Rightarrow \mathrm{x}-36=0$ or $\mathrm{x}+3=0$
$x=36$ or $x=-3$ (Reject)
$\Rightarrow$ First speed of train $=36 \mathrm{~km} / \mathrm{h}$.
OR

## Solve the following for x :

$\frac{1}{2 a+b+2 x}=\frac{1}{2 a}+\frac{1}{b}+\frac{1}{2 x}$
Ans : $\frac{1}{2 \mathrm{a}+\mathrm{b}+2 \mathrm{x}}=\frac{1}{2 \mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{2 \mathrm{x}}$
$\Rightarrow \frac{1}{2 \mathrm{a}+\mathrm{b}+2 \mathrm{x}}-\frac{1}{2 \mathrm{x}}=\frac{1}{2 \mathrm{a}}+\frac{1}{\mathrm{~b}}$
$\Rightarrow \frac{2 \mathrm{x}-(2 \mathrm{a}+\mathrm{b}+2 \mathrm{x})}{(2 \mathrm{a}+\mathrm{b}+2 \mathrm{x}) 2 \mathrm{x}}=\frac{\mathrm{b}+2 \mathrm{a}}{2 \mathrm{ab}}$
$\Rightarrow \frac{-(2 a+b)}{(2 a+b+2 x) 2 x}=\frac{(2 a+b)}{2 a b}$
$\Rightarrow 2 \mathrm{x}^{2}+2 \mathrm{ax}+\mathrm{bx}+\mathrm{ab}=0$
$\Rightarrow 2 \mathrm{x}(\mathrm{x}+\mathrm{a})+\mathrm{b}(\mathrm{x}+\mathrm{a})=0$
$\Rightarrow(x+a)(2 x+b)=0$
$\Rightarrow \mathrm{x}+\mathrm{a}=0$ or $2 \mathrm{x}+\mathrm{b}=0$
$\Rightarrow \mathrm{x}=-\mathrm{a}$ or $\mathrm{x}=-\mathrm{b} 2$
35. Find the values of $x$ and $y$ if the median for the following data is 31 .

| Class | Frequency |
| :---: | :---: |
| $0-10$ | 5 |
| $10-20$ | x |
| $20-30$ | 6 |
| $30-40$ | y |
| $40-50$ | 6 |
| $50-60$ | 5 |
| Total | $\mathbf{4 0}$ |

Ans :

| Class | f | c.f. |
| :---: | :---: | :---: |
| $0-10$ | 5 | 5 |
| $10-20$ | x | $5+\mathrm{x}$ |
| $20-30$ | 6 | $11+\mathrm{x}$ |
| $30-40$ | y | $11+\mathrm{x}+\mathrm{y}$ |
| $40-50$ | 6 | $17+\mathrm{x}+\mathrm{y}$ |
| $50-60$ | 5 | $22+\mathrm{x}+\mathrm{y}$ |
| Total | $\mathbf{4 0}$ |  |

$\therefore x+y+22=40$
$x+y=40-22=18$
$y=18-x$
$\frac{\mathrm{n}}{2}=\frac{40}{2}=20$
Median is 31 ...[Given

$\Rightarrow 31-30=\frac{(20-11-\mathrm{x})}{18-\mathrm{x}} \times 10$
[From (i)
$\Rightarrow 18-\mathrm{x}=(9-\mathrm{x}) 10$
$\Rightarrow 18-\mathrm{x}=90-10 \mathrm{x}$
$\Rightarrow-\mathrm{x}+10 \mathrm{x}=90-18$
$\Rightarrow 9 \mathrm{x}=72$
$\Rightarrow \mathrm{x}=8$
Putting the value of $x$ in (i), we have
$y=18-8=10$
$\therefore \mathrm{x}=8, \mathrm{y}=10$.

## SECTION E

Case study based questions are compulsory.
36. Balloon Elevation from Windows

Suppose, there are two windows in a house. A window of the house is at a height of
1.5 m above the ground and the other window is 3 m vertically above the lower window.


Amit and Manjeet are sitting in the two windows. At an instant, the angles of elevation of a balloon from these windows are observed as $45^{\circ}$ and $30^{\circ}$, respectively.
On the basis of above information, answer the following questions.
i) Find the height of the balloon from the ground.

2
OR
Find the distance between Manjeet and balloon.
ii) If the height of any tower is double and the distance between the observer and foot of the tower is also doubled, then what is the angle of elevation.

## 1

iii) Suppose a tower and a pole is standing on the gound and angle of elevation from bottom of pole is $\theta_{1}$ and elevation from top of pole to the top of tower is $\theta_{2}$, then show that $\theta_{1}>\theta_{2}$.

1


Ans : i) Let AG be the height of the balloon from the ground and $\mathrm{C}, \mathrm{D}$ be the position of the windows, such that $\mathrm{BC}=1.5 \mathrm{~m}$ and
$\mathrm{CD}=3 \mathrm{~m}$


At points $C$ and $D$, angles of elevation of balloon are $45^{\circ}$ and $30^{\circ}$.

Draw perpendicular lines EC and FD on
AG. Then. $\angle \mathrm{ECG}=45^{\circ}$ and
$\angle \mathrm{FDG}=30^{\circ}$,
$\mathrm{BC}=\mathrm{AE}=1.5 \mathrm{~m}$ and $\mathrm{CD}=\mathrm{EF}=3 \mathrm{~m}$
Let $\mathrm{AB}=\mathrm{CE}=\mathrm{DF}=\mathrm{x} \mathrm{m}$ and $\mathrm{FG}=\mathrm{hm}$
In right angled $\triangle E C G$,
$\tan 45^{\circ}=\frac{\mathrm{EG}}{\mathrm{EC}}=\frac{3+\mathrm{h}}{\mathrm{x}}$
$\Rightarrow 1=\frac{3+h}{x}$
$\Rightarrow \mathrm{x}=3+\mathrm{h}\left[\because \tan 45^{\circ}=1\right]$
In right angled $\Delta \mathrm{FDG}$,
$\tan 30^{\circ}=\frac{\mathrm{GF}}{\mathrm{DF}}=\frac{\mathrm{h}}{\mathrm{x}} \Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{h}}{\mathrm{x}}$
$\Rightarrow \mathrm{x}=\sqrt{3} \mathrm{~h} \quad\left[\because \tan 30^{\circ}=\frac{1}{\sqrt{3}}\right]$
On putting $x=\sqrt{3} h$ in Eq. (i), we get

$$
\begin{aligned}
& 3+\mathrm{h}=\sqrt{3} \mathrm{~h} \\
& \Rightarrow \mathrm{~h}(\sqrt{3}-1)=3 \\
& \Rightarrow \mathrm{~h}=\frac{3}{(\sqrt{3}-1)} \\
& \Rightarrow \mathrm{h}=\frac{3}{1.732-1} \\
&=\frac{3}{1.732}
\end{aligned}
$$

$\therefore \mathrm{h}=4.098 \mathrm{~m}$
Hence, height of balloon from the ground
$=4.098+3+1.5=8.598 \mathrm{~m}=8.6 \mathrm{~m}$
Now, distance between Manjeet and balloon is given by

$$
\begin{aligned}
\mathrm{GD} & =\sqrt{(\mathrm{GF})^{2}+(\mathrm{FD})^{2}} \\
\quad & =\sqrt{\mathrm{h}^{2}+\mathrm{x}^{2}}=\sqrt{\mathrm{h}^{2}+3 \mathrm{~h}^{2}} \\
{[\because \mathrm{x}} & =\sqrt{3 \mathrm{~h}}] \\
= & \sqrt{4 \mathrm{~h}^{2}}=2 \mathrm{~h}=2 \times 4.098=8.196 \mathrm{~m}
\end{aligned}
$$

ii) If the height of any tower is double and the distance between the observer and foot of the tower is also double, then the angle of elevation remain same.
iii) It is clear from the figure that $\theta_{1}>\theta_{2}$.

## 37. Sports Day Activity in School

In sports day activities of Delhi Public School, the lines have been drawn with chalk powder in rectangular shaped field OBCD. Each line is $1 / 2 \mathrm{~m}$ apart from each other. 60 flower pots have been placed at a distance of $1 / 2 \mathrm{~m}$ from each other along OD. Yamini runs $1 / 4$ th of the distance OD on the 3rd line and plants a red flower. Kamla runs $\mathbf{- 1 / 5}$ th
of the distance OD on the 7th line and plants a yellow flower.


Based on the above information, answer the following questions
i) Find the distance between red and yellow flowers.
ii) Find the area of rectangular field. 2

Ans : i) Distance between red flower $(1.5,7.5)$ and yellow flower $(3.5,6)$
$=\sqrt{(3.5-1.5)^{2}+(6-7.5)^{2}}$
$=\sqrt{4+2.25}=\sqrt{6.25}=2.5 \mathrm{~m}$
ii) The width of the rectangular field $=\frac{1}{2} \times 60$ $=30 \mathrm{~m}$
$\therefore$ Area of rectangular field $=$
Length $\times$ Breadth
$=5.5 \times 30$
$=165 \mathrm{~m}^{2}$
OR
Find the length of the diagonal of the rectangular field.
iii) What is the length of the rectangle field?

Coordinates of point O are $(0,0)$
and coordinates of point C are
$\left(\frac{1}{2} \times 11, \frac{1}{2} \times 60\right)$
i.e. C $(5.5,30)$

Length of diagonal of rectangle

$$
\begin{aligned}
& =\sqrt{(0-5.5)^{2}+(0-30)^{2}} \\
& =\sqrt{(5.5)^{2}+(30)^{2}} \\
& =\sqrt{30.25+900} \\
& =\sqrt{930.25} \\
& =30.5 \mathrm{~m}
\end{aligned}
$$

iii) Length of the rectangle field $=\frac{1}{2} \times 11=5.5 \mathrm{~m}$
38. India is competitive manufacturing location due to the low cost of manpower and strong technical and engineering capabilities contributing to higher quality production runs. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 16000 sets in 6th year and 22600 in 9th year.

i) In which year, the production is Rs 29,200.
ii) Find the production during 8th year. (2)

Ans : $a_{6}=16000, a_{9}=22600$
$a+5 d=16000----(1)$
$a+8 d=22600$
substitute $\mathrm{a}=1600-5 \mathrm{~d}$ from (1)
$16000-5 \mathrm{~d}+8 \mathrm{~d}=22600$
$3 \mathrm{~d}=22600-16000$
$3 \mathrm{~d}=6600$
$\mathrm{d}=6600 / 3=2200$
$\mathrm{a}=16000-5(2200)$

| $\begin{aligned} & \mathrm{a}=16000-11000 \\ & \mathrm{a}=5000 \end{aligned}$ <br> (i) $\begin{aligned} & \mathrm{a}_{\mathrm{n}}=29200, \mathrm{a}=5000, \mathrm{~d}=2200 \\ & \mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\ & 29200=5000+(\mathrm{n}-1) 2200 \\ & 29200-5000=2200 \mathrm{n}-2200 \\ & 24200+2200=2200 \mathrm{n} \\ & 26400=2200 \mathrm{n} \\ & \mathrm{n}=264 / 22 \mathrm{n}=12 \end{aligned}$ <br> in $12^{\text {th }}$ year the production was <br> Rs 29200 <br> (ii) $\begin{aligned} \mathrm{n} & =8, \mathrm{a}=5000, \mathrm{~d}=2200 \\ \mathrm{a}_{\mathrm{n}} & =\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\ & =5000+(8-1) 2200 \\ & =5000+7 \times 2200 \\ & =5000+15400 \\ & =20400 \end{aligned}$ <br> The production during 8th year is $=20400$ <br> OR <br> Find the production during first 3 years. <br> iii) Find the difference of the production <br> during 7th year and 4th year. <br> Ans $\begin{align*} \mathrm{n} & =3, \mathrm{a}=5000, \mathrm{~d}=2200  \tag{1}\\ \mathrm{~S}_{\mathrm{n}} & =\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\ & =\frac{3}{2}[2(5000)+(3-1) 2200] \\ \mathrm{S}_{3} & =\frac{3}{2}(10000+2 \times 2200) \\ & =\frac{3}{2}(10000+4400) \\ & =3 \times 7200 \\ & =21600 \end{align*}$ <br> The production during first 3 year is 21600 <br> (iii) $\mathrm{a}_{4}=\mathrm{a}+3 \mathrm{~d}$ $\begin{aligned} & =5000+3(2200) \\ & =5000+6600=11600 \\ \mathrm{a}_{7} & =\mathrm{a}+6 \mathrm{~d} \\ & =5000+6 \times 2200 \end{aligned}$ | $\begin{aligned} & =5000+13200 \\ & =18200 \\ \mathrm{a}_{7}-\mathrm{a}_{4} & =18200-11600=6600 \end{aligned}$ |
| :---: | :---: |

