

Ans :	a) $\sin 60^{\circ}$					
9. Ans :	If the height of the building and distance from the building foot's to a point is increased by $\mathbf{2 0 \%}$, then the angle of elevation on the top of the building: c) Do not change					
10.	It is proposed to build a single circular park equal in area to the sum of areas of two circular parks of diameters 16 m and 12 m in a locality. The radius of the new park would be a) 10 m					1
11.	If we change the shape of an object from a sphere to a cylinder, then the volume of cylinder will c) Remains unchanged					1
12.	Mean of 100 items is 49 . It was discovered that three items which should have been $60,70,80$ were wrongly read as $40,20,50$ respectively. The correct mean is c) 50					1
13.	In the given figure, three sectors of a circle of radius 7 cm , making angles of $60^{\circ}, 80^{\circ}$ and 40° at the centre are shaded. The area of the shaded region (in cm^{2}) is [Using $\pi=\frac{22}{7}$] a) 77					1
14.	A card is drawn from a deck of 52 cards. The event E is that card is not an ace of hearts. The number of outcomes favourable to E is: d) 51					1
15. Ans :	In a hospital, weights of new born b as shown: Then the median weight is: c) 2.05 kg	ies were $\begin{aligned} & \hline 1.4-1.8 \\ & \hline 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { recorded, } \\ & \hline 1.8-2.2 \\ & \hline 15 \end{aligned}$	$\begin{aligned} & 2.2-2.6 \\ & \hline 6 \end{aligned}$	th. Data is $\begin{array}{\|l\|} \hline 2.6-3.0 \\ \hline 1 \\ \hline \end{array}$	1

16. Ans :	In the given figure, $\Delta \mathrm{ABC} \sim \Delta \mathrm{QPR}$. The value of \mathbf{x} is. a) 2.25 cm	1
17. Ans:	The pair of equations $3 x-5 y=7$ and $-6 x+10 y=7$ have c) no solution	1
$18 .$ Ans:	The value of $\cos 0^{\circ} \cdot \cos 1^{\circ} \cdot \cos 2^{\circ} \cdot \cos 3^{\circ} \ldots \cos 89^{\circ} \cos 90^{\circ}$ is c) 0	1
19. Ans:	Assertion(A): If $x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$ and $x \sin \theta=y \cos \theta$, then $\mathrm{x}^{2}+\mathrm{y}^{2}=1$. Reason(R): For any value of $\theta, \sin ^{2} \theta+\cos ^{2} \theta=1$ a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).	1
20.	Assertion(A): If one zero of polynomial $p(x)=\left(k^{2}+4\right) \mathbf{x}^{2}+13 x+4 k$ is reciprocal of the other, then $k=2$. Reason(R): If $(x-a)$ is a factor of $p(x)$, then $p(a)=0$ i.e., a is a zero of $p(x)$. b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).	1
	SECTION B Section B consists of 5 questions of 2 marks each.	
$21 .$ Ans.	Find value of K for which the consecutive terms $3 k+1,2 k+3,6 k+2$, form an AP. $\begin{array}{ll} 3 \mathrm{k}+1,2 \mathrm{k}+3 \text { and } 6 \mathrm{k}+2 \text { form an AP } & \\ \therefore \mathrm{a}_{2}-\mathrm{a}_{1}=\mathrm{a}_{3}-\mathrm{a}_{2} & \therefore 2 \mathrm{k}+3-(3 \mathrm{k}+1)=6 \mathrm{k}+2-(2 \mathrm{k}+3) \\ 2 \mathrm{k}+3-3 \mathrm{k}-1=6 \mathrm{k}+2-2 \mathrm{k}-3 & \therefore-\mathrm{k}+2=4 \mathrm{k}-1 \\ \therefore 5 \mathrm{k}=3 & \therefore \mathrm{k}=3 / 5 . \end{array}$	2
22.	The distance between $A(1,3)$ and $B(x, 7)$ is 5 . calculate the possible values of \mathbf{x}. $\mathrm{A}(1,3), \mathrm{B}(\mathrm{x}, 7)$, and $\mathrm{AB}=5$ units. Distance $A B=5$ units. $\sqrt{(x-1)^{2}+(7-3)^{2}}=5^{2}$ ---(distance formula) squaring both sides	2

	$\begin{array}{ll} \therefore(\mathrm{x}-1)^{2}+4^{2}=5^{2} & \therefore \mathrm{x}^{2}-2 \mathrm{x}+1+16=25 \\ \therefore \mathrm{x}^{2}-2 \mathrm{x}+17=25 & \therefore \mathrm{x}^{2}-2 \mathrm{x}-8=0 \\ \therefore \mathrm{x}^{2}-4 \mathrm{x}+2 \mathrm{x}-8=0 & \therefore \mathrm{x}(\mathrm{x}-4)+2(\mathrm{x}-4)=0 \\ \therefore(\mathrm{x}-4)(\mathrm{x}+2)=0 & \therefore \mathrm{x}-4=0 \text { or } \mathrm{x}+2=0 \\ \therefore \mathrm{x}=4 \text { or } \mathrm{x}=-2 . & \end{array}$	
23. Ans.	If a circle touches the side $B C$ of $\triangle A B C$ at P and extended sides $A B$ and $A C$ at Q and R respectively, prove that $A Q=\frac{1}{2}(B C+C A+A B)$. $\begin{array}{ll} \mathrm{AQ}=\mathrm{AR} & --(\mathrm{i}) \\ \mathrm{BP}=\mathrm{BQ} & ---(i i) \\ \mathrm{CP}=\mathrm{CR} & --(i i i) \end{array}$ ---(Length of tangents drawn from an external point to a circle are equal. Perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{AC}$ \therefore Perimeter of $\triangle \mathrm{ABC}=(\mathrm{AQ}-\mathrm{BQ})+(\mathrm{BP}+\mathrm{PC})+(\mathrm{AR}-\mathrm{CR})$ Perimeters of $\triangle \mathrm{ABC}=(\mathrm{AQ}-\mathrm{BQ})+(\mathrm{BQ}+\mathrm{PC})+(\mathrm{AQ}-\mathrm{PC})$ \therefore Perimeter of $\triangle \mathrm{ABC}=2 \mathrm{AQ}$ $\therefore \mathrm{AQ}=\frac{1}{2}$ perimeter of $\triangle \mathrm{ABC}$ $\therefore \mathrm{AQ}=\frac{1}{2}(\mathrm{BC}+\mathrm{CA}+\mathrm{AB})$.	2
24. Ans. Ans.	Find the roots of quadratic equation $x^{2}-7 x+12=\mathbf{0}$. $\begin{aligned} & \mathrm{x}^{2}-7 \mathrm{x}+12=0 \quad-- \text { (given) } \\ & \therefore \mathrm{x}^{2}-4 \mathrm{x}-3 \mathrm{x}+12=0 \\ & \therefore \quad(\mathrm{x}-4)(\mathrm{x}-3)=0 \\ & \therefore \mathrm{x}=4 \text { or } \mathrm{x}=3 . \end{aligned}$ OR Find the value of p so that the quadratic equation $x^{2}+p x+1=0$ has real roots. Given quadratic equation is $\begin{aligned} & \mathrm{x}^{2}+\mathrm{px}+1=0 \\ & \therefore \quad \mathrm{a}=1, \mathrm{~b}=\mathrm{p} \text { and } \mathrm{c}=1 \end{aligned}$ For having real roots, $\begin{aligned} & \mathrm{b}^{2}-4 \mathrm{ac}=0 \\ & \therefore \mathrm{p}^{2}-4(1)(1)=0 \quad \therefore \mathrm{p}^{2}-4=0 \end{aligned}$	2

\begin{tabular}{|c|c|c|}
\hline \& $\therefore \mathrm{p}^{2}=4 \quad \therefore \mathrm{p}= \pm 2$ \& \\
\hline 25.
Ans.

Ans. \& | If $\sqrt{3} \sin \theta-\cos \theta=0$ and $0^{\circ}<\theta<90^{\circ}$, find the value of θ. $\begin{aligned} & \sqrt{3} \sin \theta=\cos \theta \\ & \therefore-- \text {-(given) } \\ & \therefore \sqrt{3}=\frac{\cos \theta}{\sin \theta} \quad \therefore \frac{\sin \theta}{\cos \theta}=\frac{1}{\sqrt{3}} \quad \therefore \tan \theta=\frac{1}{\sqrt{3}} \\ & \text { but } \\ & \therefore \tan 30^{\circ}=\frac{1}{\sqrt{3}} \\ & \therefore \tan \theta=\tan 30^{\circ} \therefore \theta=30^{\circ} \end{aligned}$ |
| :--- |
| OR |
| If $\mathrm{x}=\mathrm{a} \sin \theta$ and $\mathrm{y}=\mathrm{b} \tan \theta$, then prove that $\frac{\mathrm{a}^{2}}{\mathrm{x}^{2}}-\frac{\mathrm{b}^{2}}{\mathrm{y}^{2}}=1$. $\left.\begin{array}{ll} & \text { L.H.S. }=\frac{\mathrm{a}^{2}}{\mathrm{x}^{2}}-\frac{\mathrm{b}^{2}}{\mathrm{y}^{2}} \end{array} \quad=\frac{\mathrm{a}^{2}}{(\mathrm{a} \sin \theta)^{2}}-\frac{\mathrm{b}^{2}}{(\mathrm{~b} \tan \theta)^{2}}\right)$ | \& 2 \\

\hline \& | SECTION C |
| :--- |
| Section C consists of 6 questions of $\mathbf{3}$ marks each. | \& \\

\hline | 26. |
| :--- |
| Ans. | \& | Show that $\sqrt{5}$ is an irrational number. |
| :--- |
| Let us assume that $\sqrt{5}$ is a rational number. $\therefore \sqrt{5}=\frac{p}{q}$ |
| Where p, q are co-prime integers and $\mathrm{q} \neq \mathrm{o}$ |
| $\therefore 5=\frac{\mathrm{p}^{2}}{\mathrm{q}^{2}} \quad$---(squaring both sides) |
| $\therefore 5 q^{2}=\mathrm{p}^{2}$ |
| So, 5 divides p |
| $\therefore \mathrm{p}$ is a multiple of $5 \quad \therefore \mathrm{p}=5 \mathrm{~m} \quad \therefore \mathrm{p}^{2}=25 \mathrm{~m}^{2}$ |
| $\therefore 5 q^{2}=25 \mathrm{~m}^{2} \quad--[$ [from (i) and (ii)] |
| $\therefore \mathrm{q}^{2}=5 \mathrm{~m}^{2} \quad \therefore \mathrm{q}^{2}$ is a multiple of $5 \therefore \mathrm{q}$ is a multiple of 5 |
| Hence, p and q have a common factor 5 . |
| This cantradicts our assumption that they are co-primes. | \& 3 \\

\hline
\end{tabular}

	$\therefore \frac{\mathrm{p}}{\mathrm{q}}$ is not a rational number $\therefore \sqrt{5}$ is an irrational number.	
27.	Find the area of the shaded region in the fig., where a circular arc of radius 6 cm has been drawn with vertex O of an equilateral triangle $O A B$ of side 12 cm as centre. $\mathrm{r}=6 \mathrm{~cm}$, side of an equilateral triangle $(\mathrm{a})=12 \mathrm{~cm}$, $\theta=60^{\circ} \quad---$ (angle of an equilateral triangle) Area of shaded region $=$ Area of circle + Area of equilateral triangle -A (sector) $\begin{aligned} & =\pi r^{2}+\frac{\sqrt{3}}{4} \mathrm{a}^{2}-\frac{\theta}{360} \pi \mathrm{r}^{2} \\ & =36 \pi-\frac{1}{6} 36 \pi+\frac{\sqrt{3}}{4} \times 144 \\ & =36 \pi\left(\frac{5}{6}\right)+36 \sqrt{3} \end{aligned}$ $=\pi(6)^{2}+\frac{\sqrt{3}}{4}(12)^{2}-\frac{60}{360} \pi(6)^{2}$ $=36 \pi\left(1-\frac{1}{6}\right)+36 \sqrt{3}$ $=36 \times \frac{22}{7} \times \frac{5}{6}+36 \sqrt{3}=\frac{660}{7}+36 \sqrt{3}$ \therefore Area of shaded region $=\left(\frac{660}{7}+36 \sqrt{3}\right) \mathrm{cm}^{2} .$	3
28.	'Mr. Kasam runs a small business of making earthen pots. He makes certain number of pots on daily basis. Production cost of each pot is ₹ $\mathbf{4 0}$ more than $\mathbf{1 0}$ times total number of pots, he makes in one day. If production cost of all pots per day is ₹ 600 , find production cost of one pot and number of pots he makes per day. Let Mr. Kasam make x number of pots on daily basis. Production cost of each pot $=₹(10 \mathrm{x}+40)$ According to the given condition, $\begin{aligned} & \mathrm{x}(10 \mathrm{x}+40)=600 \\ & \Rightarrow 10 \mathrm{x}^{2}+40 \mathrm{x}=600 \\ & \Rightarrow 10 \mathrm{x}^{2}+40 \mathrm{x}-600=0 \\ & \Rightarrow \mathrm{x}^{2}+4 \mathrm{x}-60=0 \ldots[\text { Dividing both sides by } 10] \\ & \Rightarrow \mathrm{x}^{2}+10 \mathrm{x}-6 \mathrm{x}-60=0 \\ & \Rightarrow \mathrm{x}(\mathrm{x}+10)-6(\mathrm{x}+10)=0 \\ & \Rightarrow(\mathrm{x}+10)(\mathrm{x}-6)=0 \end{aligned}$	3

Ans.	By using the property, if the product of two numbers is zero, then at least one of them is zero, we get $\begin{aligned} & =x+10=0 \text { or } x-6=0 \\ & =x=-10 \text { or } x=6 \end{aligned}$ But, number of pots cannot be negative. $\begin{aligned} & =x=6 \\ & =\text { Production cost of each pot }=₹(10 x+40) \\ & =₹[(10 \times 6)+40] \\ & =₹(60+40)=₹ 100 \end{aligned}$ Production cost of one pot is ₹ 100 and the number of pots Mr. Kasam makes per day is 6 . OR The sum of squares of two consecutive even natural numbers is 244 ; find the numbers. Let the first even natural number be x . \therefore the next consecutive even natural number will be $(x+2)$. According to the given condition, $\begin{aligned} & \mathrm{x}^{2}+(\mathrm{x}+2)^{2}=244 \\ & \Rightarrow \mathrm{x}^{2}+\mathrm{x}^{2}+4 \mathrm{x}+4=244 \\ & \Rightarrow 2 \mathrm{x}^{2}+4 \mathrm{x}+4-244=0 \\ & \Rightarrow 2 \mathrm{x}^{2}+4 \mathrm{x}-240=0 \\ & \left.\Rightarrow \mathrm{x}^{2}+2 \mathrm{x}-120=0 . \ldots \text { Dividing both sides by } 2\right] \\ & \Rightarrow \mathrm{x}^{2}+12 \mathrm{x}-10 \mathrm{x}-120=0 \\ & \Rightarrow \mathrm{x}(\mathrm{x}+12)-10(\mathrm{x}+12)=0 \\ & \Rightarrow(\mathrm{x}+12)(\mathrm{x}-10)=0 \end{aligned}$ By using the property, if the product of two numbers is zero, then at least one of them is zero, we get $\begin{aligned} & \therefore \mathrm{x}+12=0 \text { or } \mathrm{x}-10=0 \\ & \therefore \mathrm{x}=-12 \text { or } \mathrm{x}=10 \end{aligned}$ But, natural number cannot be negative. $\therefore x=10 \text { and } x+2=10+2=12$ \therefore The two consecutive even natural numbers are 10 and 12 .	

29. Ans.	$\begin{aligned} & \text { If } 5 \tan \alpha=4 \text {, show that } \frac{5 \sin \alpha-3 \cos \alpha}{5 \sin \alpha+2 \cos \alpha}=\frac{1}{6} . \\ & \quad 5 \tan \alpha=4 \quad-- \text { (given) } \\ & \therefore \tan \alpha=\frac{4}{5} \\ & \frac{5 \sin \alpha-3 \cos \alpha}{5 \sin \alpha+2 \cos \alpha} \\ & \quad=\frac{\frac{5 \sin \alpha-3 \cos \alpha}{\cos \alpha}}{\frac{5 \sin \alpha+2 \cos \alpha}{\cos \alpha}} \quad---(\text { divide Numerator and denominator by } \cos \alpha) \\ & \quad=\frac{\frac{5 \sin \alpha}{\cos \alpha}-3 \frac{\cos \alpha}{\cos \alpha}}{\frac{5 \sin \alpha}{\cos \alpha}+2 \frac{\cos \alpha}{\cos \alpha}} \quad=\frac{5 \tan \alpha-3}{5 \tan \alpha+2} \quad=\frac{5(4 / 5)-3}{5(4 / 5+2)}=\frac{4-3}{4+2} \\ & \therefore \frac{5 \sin \alpha-3 \cos \alpha}{5 \sin \alpha+2 \cos \alpha}=\frac{1}{6} . \end{aligned}$	3
30.	Prove that the lengths of tangents drawn from an external point to a circle are equal Given: PT and PS are tangents from an external point P to the circle with centre O . To prove: PT = PS Construction: Join O to P, T and S. Proof: In ${ }_{\Delta}$ OTP and ${ }_{\Delta}$ OSP. $\begin{aligned} & \mathrm{OT}=\mathrm{OS} \ldots[\text { radii of the same circle }] \\ & \mathrm{OP}=\mathrm{OP} \ldots \text { [common }] \\ & \angle \mathrm{OTP}=\angle \mathrm{OSP} \ldots\left[\text { each } 90^{\circ}\right] \\ & \Delta \mathrm{OTP}=\Delta \mathrm{OSP} \ldots[\text { R.H.S. }] \\ & \mathrm{PT}=\mathrm{PS} \ldots \text { [c.p.c.t.] } \end{aligned}$	3

Ans.	OR If $P A$ and $P B$ are two tangents drawn from a point P to a circle with centre O touching it at A and B. Prove that $O P$ is the perpendicular bisector of $A B$. Let OP intersect AB at a point C , we have to prove that $\mathrm{AC}=\mathrm{CB}$ and $\angle \mathrm{ACP}=\angle \mathrm{BCP}=90^{\circ}$ $\because \mathrm{PA}, \mathrm{PB}$ are two tangents from a point P to the circle with centre O $\angle \mathrm{APO}=\angle \mathrm{BPO}[\because$ O lies on the bisector of $\angle \mathrm{APB}]$ In two $\Delta \mathrm{s}, \mathrm{ACP}$ and BCP , we have Hence, OP is perpendicular bisector of AB .
$31 .$ Ans.	Find the probability of getting 53 Tuesdays in a leap year. In leap year, there are 366 days. $366 \text { days }=52 \text { weeks }+2 \text { days }$ These 2 days can be $\{($ Monday, Tuesday), (Tuesday, Wednesday), (Wednesday, Thursday), (Thursday, Friday), (Friday, Saturday), (Saturday, Sunday), (Sunday, Monday)\} Favourable cases : Getting Tuesday = $\{$ Monday, Tuesday), (Tuesday, Wednesday) $\}$

	\therefore Probability that a leap year will contain 53 sundays $=\frac{\text { No. of favourable cases }}{\text { Total no. of cases }}=\frac{2}{7}$.	
	SECTION D Section D consists of 4 questions of 5 marks each.	
32.	Kargil's temperature was recorded in a week from Monday to Saturday. All readings were in A.P. The sum of temperatures of Monday and Saturday was $5^{\circ} \mathrm{C}$ more than sum of temperatures of Tuesday and Saturday. If temperature of Wednesday was -30° Celsius then find the temperature on the other five days. Let the temperatures from Monday to Saturday in A.P. be $a, a+d, a+2 d, a+3 d, a+4 d, a+5 d$. According to the first condition, $\begin{aligned} & (a)+(a+5 d)=(a+d)+(a+5 d)+5^{0} \\ & \not 2 a+5 d=2 \not a+6 d+5 \\ & \therefore d=-5^{0} \end{aligned}$ According to the second condition, $\begin{aligned} & a+2 d=-30^{\circ} \\ & =a+2\left(-5^{\circ}\right)=-30^{\circ} \\ & =a-10^{\circ}=-30^{\circ} \\ & a=-30^{\circ}+10^{\circ}=-20^{\circ} \\ & a+d=-20^{\circ}-5^{\circ}=-25^{\circ} \\ & a+3 d=-20^{\circ}+3\left(-5^{\circ}\right)=-20^{\circ}-15^{\circ}=-35^{\circ} \\ & a+4 d=-20^{\circ}+4\left(-5^{\circ}\right)=-20^{\circ}-20^{\circ}=-40^{\circ} \\ & a+5 d=-20^{\circ}+5\left(-5^{\circ}\right)=-20^{\circ}-25^{\circ}=-45^{\circ} \\ & =\text { The temperatures on the other five days are } \\ & -20^{\circ} \mathrm{C},-25^{\circ} \mathrm{C},-35^{\circ} \mathrm{C},-40^{\circ} \mathrm{C} \text { and }-45^{\circ} \mathrm{C} . \\ & \text { OR } \end{aligned}$ A man borrows ₹ $\mathbf{8 0 0 0}$ and agrees to repay with a total interest of ₹ $\mathbf{1 3 6 0}$ in $\mathbf{1 2}$ monthly instalments. Each instalment being less than the preceding one by ₹ $\mathbf{4 0}$. Find the amount of the first and last instalment. i. The instalments are in A.P. Amount repaid in 12 instalments $\left(\mathrm{S}_{12}\right)$ $=$ Amount borrowed + total interest $=8000+1360$ $\therefore \mathrm{S}_{12}=9360$ Number of instalments $(\mathrm{n})=12$ Each instalment is less than the preceding one by ₹ 40 . $\therefore \mathrm{d}=-40$	5

	$\begin{aligned} & \text { ii. } \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\ & \therefore \mathrm{S}_{12}=\frac{12}{2}[2 \mathrm{a}+(12-1)(-40)] \\ & \therefore 9360=6[2 \mathrm{a}+(11)(-40)] \\ & \therefore 9360=6(2 \mathrm{a}-440) \\ & \therefore \frac{9360}{6}=2 \mathrm{a}-440 \\ & \therefore 1560=2 \mathrm{a}-440 \\ & \therefore 1560+440=2 \mathrm{a} \\ & \therefore 2000=2 \mathrm{a} \\ & \therefore \mathrm{a}^{2}=\frac{2000}{2} \\ & \therefore \mathrm{a}=1000 \\ & \text { iii. } \mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\ & \therefore \mathrm{t}_{12}=1000+(12-1)(-40) \\ & \quad=1000+11(-40) \\ & =1000-440 \\ & \therefore \mathrm{t}_{12}=560 \end{aligned}$ \therefore Amount of the first instalment is ₹ 1000 and that of the last instalment is ₹ 560 .	
33.	A Solid is in the form of a circular cone mounted on a hemisphere. The radius of the hemisphere is 2.1 cm and the height of the cone is 4 cm . The solid is placed in a cylindrical tub full of water, in such a way that the whole solid is submerged in water. If the radius of the cylinder is 5 cm and its height is 9.8 cm , find the volume of the water left in the cylindrical tub. Radius of hemisphere and cone $(\mathrm{r})=2.1 \mathrm{~cm}$ height of cone (h) $=4 \mathrm{~cm}$ Vol. of solid $=$ Vol. of hemisphere + Vol. of cone $\begin{array}{ll} =\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} \mathrm{~h} & =\frac{2}{3} \times \pi \times(2.1)^{3}+\frac{1}{3} \times \pi \times(2.1)^{2} \times 4 \\ =\frac{1}{3} \pi(2.1)^{2}[2(2.1)+4] & =\frac{1}{3} \times \pi \times 2.1 \times 2.1(4.2+4) \\ = & \frac{1}{3} \times \frac{22}{7} \times 2.1 \times 2.1 \times 8.2=22 \times 0.7 \times 0.3 \times 8.2=37.884 \mathrm{~cm}^{3} \end{array}$ Also, Radius of cylindrical tub $=5 \mathrm{~cm}$	5

	Height of cylindrical tub $=9.8 \mathrm{~cm}$ Vol. of cylindrical tub $\left.=\frac{22}{7} \times(5)^{2} \times 9.8\right)=22 \times 25 \times 1.4=770 \mathrm{~cm}^{3} .$ When the solid is submerged in the tub then vol. of water left $=$ Vol. of cylinder tub - Vol. of solid $=770-37.884 \quad=732.116 \mathrm{~cm}^{3}$ \therefore Vol. of water left $=732.116 \mathrm{~cm}^{3}$	
34.1 Ans.	If the length of a rectangle is increased by 2 cm and width by $\mathbf{~ c m}$, its area is increased by $35 \mathrm{~cm}^{2}$. If the length and width are decreased by 2 cm each, the area is descreased by $18.4 \mathbf{~ c m}^{2}$. Find the dimensions of the rectangle. Let length of rectangle be $\mathrm{x} \mathrm{cm} \&$ breadth be ycm . \therefore Original area of rectangle $=x y$ adding equation(i) \& (ii) $x=6.6$ Put $x=6.6$ in equation (i) therefore $3(6.6)+2 y=29$ $\therefore 19.8+2 y=29$ $\therefore 2 y=9.2$ $\therefore y=4.6$ \therefore Length $=6.6 \mathrm{~cm}$ and breadth $=4.6 \mathrm{~cm}$. A man travels 300 km partly by train and partly by car. He takes $\mathbf{4}$ hours if the travels 60 km by train and the rest by car. If he travels 100 km by train and the remaining by car, he takes 10 minutes longer. Find the speeds of the train and the car separately. Let the speed of the train $=x \mathrm{~km} / \mathrm{hr}$ Let the speed of the car $=y \mathrm{~km} / \mathrm{hr}$ According to the Question, $\begin{align*} & \frac{60}{\mathrm{x}}+\frac{240}{\mathrm{y}}=4 \ldots \text { (i) } \quad \ldots\left[\because \text { Time }=\frac{\text { Distance }}{\text { Speed }}\right. \tag{i}\\ & \frac{100}{\mathrm{x}}+\frac{200}{\mathrm{y}}=\frac{25}{6} \ldots \text { (ii) } \ldots\left[\begin{array}{l} \because \mathrm{hr}+10 \mathrm{~min} . \\ =4+\frac{10}{60}=\frac{25}{6} \mathrm{hr} . \end{array}\right. \end{align*}$ Multiplying (i) by 5 and (ii) by 6 , we get $\frac{300}{\mathrm{x}}+\frac{1200}{\mathrm{y}}=20$	5

	$\begin{aligned} \mathrm{BC} & =\sqrt{\left(\mathrm{x}_{3}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{3}-\mathrm{y}_{2}\right)^{2}} \\ & =\sqrt{(3-0)^{2}+(0-0)^{2}} \\ & =\sqrt{9+0} \\ & =\sqrt{9} \\ & =3 \end{aligned} \quad \begin{aligned} & \mathrm{AC}=\sqrt{\left(\mathrm{x}_{3}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)^{2}} \\ &=\sqrt{(3-0)^{2}+(0-4)^{2}} \\ &=\sqrt{9+16} \\ &=\sqrt{25} \\ &=5 . \\ & \text { Perimeter of triangle }=\mathrm{AB}+\mathrm{BC}+\mathrm{AC} \\ & \quad=4+3+5 \\ & \quad=12 . \end{aligned}$	
37.	In a marriage ceremony of her daughter, Manita, Rakesh has to make arrangements for the accomodation of 150 persons. For this purpose, he plans to build a conical tent in such a way that each person has 4 sq . m . of the space on the ground and $20 \mathrm{~m}^{3}$ of the air to breathe.	
a) Ans.	Find the volume of conical tent. $\begin{aligned} \text { Volume of the conical tent } & =150 \times 20 \\ & =3000 \mathrm{~m}^{3} . \end{aligned}$	1
b) Ans.	What is the height of conical tent which Rakesh is plannilg to make? Total number of people $=150$ space required for each person on the ground $=4 \mathrm{~m}^{2}$ Area of base of the cone $=150 \times 4$ $\begin{aligned} & \pi \mathrm{r}^{2}=600 \\ & \mathrm{r}^{2}=\frac{300}{\frac{600 \times 7}{22}} \end{aligned}$	1

$$
\begin{aligned}
& \mathrm{r}^{2}=\frac{2100}{11} \\
& \frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}=3000
\end{aligned}
$$

$$
\frac{1}{\not x} \times \frac{22}{\not 2} \times \frac{\frac{100}{300}}{2100} \times \mathrm{K}=3000
$$

$$
200 \mathrm{~h}=3000
$$

$$
\mathrm{h}=15 \mathrm{~m} .
$$

c) The height of cone is 48 cm and the radius of its base is 36 cm . Find the curved surface area (take $\pi=3.14$).
Ans.
$\mathrm{h}=48 \mathrm{~cm}$
$\mathrm{l}^{2}=\mathrm{h}^{2}+\mathrm{r}^{2}$
$\mathrm{l}^{2}=48^{2}+36^{2}$
$=2304+1296$
$=3600$
$1=\sqrt{3600}$
$1=60 \mathrm{~cm}$ $\mathrm{r}=36 \mathrm{~cm}$
\therefore The curved surface area $=\pi \mathrm{rl}$

$$
\pi \mathrm{rl}=3.14 \times 36 \times 60=6782.4 \mathrm{~cm}^{2}
$$

OR

If the curved surface area of a right circular cone is $12,320 \mathrm{~cm}^{2}$ and its base radius is 56 cm then find its height $\left(\pi=\frac{22}{7}\right)$.

Ans. \quad Curved surface area $=\pi \mathrm{rl}$

$$
12320=\frac{22}{7} \times 56 \times 1
$$

$$
1=\frac{\frac{{ }^{70}}{1540}}{12320 \times 7} \times \frac{1}{7}
$$

$$
\begin{aligned}
& 8 \\
& 1
\end{aligned}
$$

$1=70 \mathrm{~cm}$

	$\begin{aligned} & 1=\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}} \quad 70=\sqrt{\mathrm{h}^{2}+56^{2}} \\ & 4900=\mathrm{h}^{2}+3136 \\ & \mathrm{~h}^{2}=1764 \\ & \mathrm{~h}=42 \mathrm{~cm} . \end{aligned}$
38.	Case Study Based Basic Proportionality Theorem (Fig. 1) A teacher is teaching Basic Proportionality theorem in a class. He has proved the result $\frac{A D}{B D}=\frac{A E}{E C}$ for $\triangle A B C$ as shown in figure 2 . Fig. 2 He proved the theorem using the following steps : Step 1: $\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{BDE})}=\frac{\frac{1}{2} \times \mathrm{AD} \times \mathrm{EF}}{\frac{1}{2} \times \mathrm{BD} \times \mathrm{EF}}=\frac{\mathrm{AD}}{\mathrm{BD}}$ Step 2 : Similarly, $\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{CDE})}=\frac{\frac{1}{2} \times \mathrm{AE} \times \mathrm{DN}}{\frac{1}{2} \times \mathrm{EC} \times \mathrm{DN}}=\frac{\mathrm{AE}}{\mathrm{EC}}$ Step 3 : But $\operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{CDE})$ $[\because$ Triangles on the same base $D E$ and between the same parallels $D E$ and $B C$ are equal in area]

$$
\begin{aligned}
& x=? \\
& \frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{EC}} \\
& \frac{4 \mathrm{x}-3}{3 \mathrm{x}-1}=\frac{8 \mathrm{x}-7}{5 \mathrm{x}-3} \\
& (4 \mathrm{x}-3)(5 \mathrm{x}-3)=(8 \mathrm{x}-7)(3 \mathrm{x}-1) \\
& 4 \mathrm{x}(5 \mathrm{x}-3)-3(5 \mathrm{x}-3)=8 \mathrm{x}(3 \mathrm{x}-1)-7(3 \mathrm{x}-1) \\
& 20 \mathrm{x}^{2}-12 \mathrm{x}-15 \mathrm{x}+9=24 \mathrm{x}^{2}-8 \mathrm{x}-21 \mathrm{x}+7 \\
& 20 \mathrm{x}^{2}-27 \mathrm{x}+9=24 \mathrm{x}^{2}-29 \mathrm{x}+7 \\
& 24 \mathrm{x}^{2}-29 \mathrm{x}+7-20 \mathrm{x}^{2}+27 \mathrm{x}-9=0 \\
& 4 \mathrm{x}^{2}-2 \mathrm{x}-2=0 \\
& 2 \mathrm{x}^{2}-\mathrm{x}-1=0 \\
& 2 \mathrm{x}^{2}-2 \mathrm{x}+\mathrm{x}-1=0 \\
& 2 \mathrm{x}(\mathrm{x}-1)+1(\mathrm{x}-1)=0 \\
& (\mathrm{x}-1)(2 \mathrm{x}+1)=0 \\
& \mathrm{x}=1 \quad \mathrm{x}=\frac{1}{2}
\end{aligned}
$$

c) In the given Fig., $\mathbf{D E} \| \mathbf{B C}$ and $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{3}{5}$.

If $\mathrm{AC}=4.8 \mathrm{~cm}$, then find AE .
Ans. Given :
$\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\mathrm{AE}=\mathrm{x}$
$\mathrm{AC}=\mathrm{AE}+\mathrm{EC}$
$4.8=\mathrm{x}+\mathrm{EC}$
$\mathrm{EC}=4.8-\mathrm{x}$
$\frac{3}{5}=\frac{x}{4.8-x}$
$3(4.8-x)=5 x$
$14.4-3 x=5 x$
$8 \mathrm{x}=14.4$

Ans.	$\begin{gathered} \quad \mathrm{x}=1.8 \\ \therefore \mathrm{AE}=1.8 \mathrm{~cm} . \end{gathered}$ OR In the figure, $E F \\| A C, B C=10 \mathrm{~cm}, \mathrm{AB}=13 \mathrm{~cm}$ and $E C=2 \mathrm{~cm}$, find $A F$. $\mathrm{BC}=10 \mathrm{~cm}$ $\mathrm{AB}=13 \mathrm{~cm}$ $\mathrm{EC}=2 \mathrm{~cm}$ $\mathrm{AF}=$? $\mathrm{BC}=\mathrm{BE}+\mathrm{ECC}$ $\mathrm{BE}=\mathrm{BC}-\mathrm{EC}$ $=10-2$ $=8$ $\mathrm{AB}=\mathrm{AF}+\mathrm{BF}$ $\mathrm{AF}=\mathrm{x}$ $10=\mathrm{x}+\mathrm{BF} \quad \mathrm{BF}=10-\mathrm{x}$ $\frac{\mathrm{BF}}{\mathrm{AF}}=\frac{\mathrm{BE}}{\mathrm{EC}}$ $\frac{10-\mathrm{x}}{\mathrm{x}}=\frac{8}{2}$ $2(10-x)=8 x$ $20-2 x=8 x$ $20=8 \mathrm{x}+2 \mathrm{x}$ $20=10 x$ $\mathrm{x}=\frac{20}{10}$ $x=2$ $\therefore \mathrm{AF}=2 .$
