

Sub. : Std. X	MathsTotal Mar(CBSE)Pre. Answer Paper - 02	ks : 80
	SECTIONA Section A consists of 20 questions of 1 mark each.	
1. Ans :	The polynomial equation $x(x + 1) + 8 = (x + 2)(x - 2)$ is a) linear equation	1
2. Ans :	There are 312, 260 and 156 students in class X, XI and XII respectively. Buses are to be hired to take these students to a picnic. Find the maximum number of students who can sit in a bus if each bus takes equal number of students a) 52	1
3. Ans :	Find the value of k if the points A(2, 3), B(4, k) and C(6, -3) are collinear. c) 0	1
4. Ans :	The $(n - 1)$ th term of an A.P. is given by 7,12,17, 22, is d) $5n - 3$	1
5. Ans :	If in two triangles ABC and $\frac{AB}{QR} = \frac{BC}{PR} = \frac{CA}{PQ}$, then a) $\Delta PQR \sim \Delta CAB$	1
6. Ans :	If the discriminant of a quadratic polynomial, D > 0, then the polynomial has b) two real and unequal roots	1
7. Ans :	In the following figure, AT is a tangent to the circle with centre O such that $OT = 4 \text{ cm} \text{ and } \angle OTA = 30^{\circ}$. Then AT is equal to $\int_{A}^{0} \int_{0}^{4cm} \int_{0}^{1} T$ c) $2\sqrt{3} \text{ cm}$	1
8.	$\frac{2\tan 30^0}{(1+\tan^2 30^0)} =$	1

Ans :	a) $\sin 60^{\circ}$				
9. Ans :	If the height of the building and distance from the building foot's to a point is increased by 20%, then the angle of elevation on the top of the building: c) Do not change				
10. Ans :	It is proposed to build a single circular park equal in area to the sum of areas of two circular parks of diameters 16 m and 12 m in a locality. The radius of the new park would be a) 10 m				
11. Ans :	If we change the shape of an object from a sphere to a cylinder, then the volume of cylinder will c) Remains unchanged				
12. Ans :	Mean of 100 items is 49. It was discovered that three items which should have been 60, 70, 80 were wrongly read as 40, 20, 50 respectively. The correct mean is c) 50				
13. Ans :	In the given figure, three sectors of a circle of radius 7 cm, making angles of 60°, 80° and 40° at the centre are shaded. The area of the shaded region (in cm ²) is [Using $\pi = \frac{22}{7}$]	1			
14. Ans :	A card is drawn from a deck of 52 cards. The event E is that card is not an ace of hearts. The number of outcomes favourable to E is: d) 51				
15.	In a hospital, weights of new born babies were recorded, for one month. Data is as shown:				
	Weight of new born baby (in kg) 1.4–1.8 1.8–2.2 2.2–2.6 2.6–3.0				
	No of babies 3 15 6 1				
Ans :	Then the median weight is: c) 2.05 kg				

16.	In the given figure, $\triangle ABC \sim \triangle QPR$. The value of x is.				
	$\begin{array}{c} A & 6 \text{ cm} & C \\ & & & & \\ & & & \\ & & & $				
Ans :	a) 2.25 cm				
17. Ans :	The pair of equations $3x - 5y = 7$ and $-6x + 10y = 7$ have c) no solution				
18. Ans :	The value of cos 0°. cos 1°. cos 2°. cos 3° cos 89° cos 90° is c) 0				
19.	Assertion(A): If $x \sin^3 \theta + y \cos^3 \theta = \sin \theta \cos \theta$ and $x \sin \theta = y \cos \theta$, then $x^2 + y^2 = 1$.	1			
Ans :	Reason(R): For any value of θ , $\sin^2 \theta + \cos^2 \theta = 1$ a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).				
20. Ans :	 Assertion(A): If one zero of polynomial p(x) = (k²+4)x²+13x + 4k is reciprocal of the other, then k = 2. Reason(R): If (x - a) is a factor of p(x), then p(a) = 0 i.e., a is a zero of p(x). b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A). 				
	SECTION B Section B consists of 5 questions of 2 marks each.				
21. Ans.	Find value of K for which the consecutive terms $3k + 1$, $2k + 3$, $6k + 2$, forman AP. $3k + 1$, $2k + 3$ and $6k + 2$ form an AP $\therefore a_2 - a_1 = a_3 - a_2$ $2k + 3 - 3k - 1 = 6k + 2 - 2k - 3$ $\therefore 5k = 3$ $\therefore k = 3/5.$	2			
22. Ans.	The distance between A(1, 3) and B(x, 7) is 5. calculate the possible values of x. A(1, 3), B(x, 7), and AB = 5 units. Distance AB = 5 units. $\sqrt{(x-1)^2 + (7-3)^2} = 5^2$ (distance formula) squaring both sides	2			

	$\therefore (x-1)^2 + 4^2 = 5^2$ $\therefore x^2 - 2x + 1 + 16 = 25$					
	$x^2 - 2x + 17 = 25$ $x^2 - 2x - 8 = 0$					
	$\therefore x^{2} - 4x + 2x - 8 = 0 \qquad \qquad \therefore x(x - 4) + 2(x - 4) = 0$					
	$(x - 4)(x + 2) = 0 \qquad (x - 4) = 0$					
	x = 4 or x = -2					
	$X = 101 X = -2.$					
23.	If a circle touches the side BC of $\triangle ABC$ at P and extended sides AB and AC					
	at Q and R respectively, prove that $AQ = \frac{1}{2}(BC + CA + AB)$.					
Ans.	$\mathbf{s.} \qquad \mathbf{AQ} = \mathbf{AR} \qquad \qquad(\mathbf{i})$					
	$BP = BQ \qquad(ii)$					
	CP = CR(iii)					
	(Length of tangents drawn from an external point to a circle are equal.					
	Perimeter of $\triangle ABC = AB + BC + AC$					
	:. Perimeter of $\triangle ABC = (AQ - BQ) + (BP + PC) + (AR - CR)$					
	Perimeters of $\triangle ABC = (AQ - BQ) + (BQ + PC) + (AQ - PC)$ \therefore Perimeter of $\triangle ABC = 2AQ$ $\therefore AQ = \frac{1}{2}$ perimeter of $\triangle APC$					
	$\therefore AQ = \frac{1}{2}(BC + CA + AB).$					
24.	Find the roots of quadratic equation $x^2 - 7x + 12 = 0$. $x^2 - 7x + 12 = 0$ (given)	2				
AIIS.	$x^{2} - 7x + 12 = 0$ ∴ $x(x - 4) - 3(x - 4) = 0$					
	$\therefore (x-4)(x-3) = 0 \qquad \qquad \therefore (x-4) = 0 \text{ or}(x-3) = 0$					
	\therefore x = 4 or x = 3.					
	OR					
	Find the value of p so that the quadratic equation $x^2 + px + 1 = 0$ has real roots.					
Ans.	Given quadratic equation is					
	$\mathbf{x}^2 + \mathbf{p}\mathbf{x} + 1 = 0$					
	\therefore a = 1, b = p and c = 1					
	For naving real roots, $b^2 - 4ac = 0$					
	$\therefore p^2 - 4(1)(1) = 0$ $\therefore p^2 - 4 = 0$					

	$\therefore \text{ Probability that a leap year will contain 53 sundays} = \frac{\text{No. of favourable cases}}{\text{Total no. of cases}} = \frac{2}{7}.$					
	SECTION D Section D consists of 4 questions of 5 marks each.					
32. Ans.	Kargil's temperature was recorded in a week from Monday to Saturday. All readings were in A.P. The sum of temperatures of Monday and Saturday was 5°C more than sum of temperatures of Tuesday and Saturday. If temperature of Wednesday was -30° Celsius then find the temperature on the other five days. Let the temperatures from Monday to Saturday in A.P. be	5				
	a, a + d, a + 2d, a + 3d, a + 4d, a + 5d.					
	According to the first condition,					
	$(a) + (a + 5d) = (a + d) + (a + 5d) + 5^{0}$					
	$\mathcal{Z}a + 5d = 2\mathcal{A} + 6d + 5$					
	$\therefore d = -5^{\circ}$					
	According to the second condition,					
	$a + 2d = -30^{\circ}$					
	$= a + 2(-5^{\circ}) = -30^{\circ}$					
	$= a - 10^{\circ} = -30^{\circ}$					
	$a = -30^{\circ} + 10^{\circ} = -20^{\circ}$					
	$a + d = -20^{\circ} - 5^{\circ} = -25^{\circ}$					
	$a + 3d = -20^{\circ} + 3(-5^{\circ}) = -20^{\circ} - 15^{\circ} = -35^{\circ}$					
	$a + 4d = -20^{\circ} + 4(-5^{\circ}) = -20^{\circ} - 20^{\circ} = -40^{\circ}$					
	$a + 5d = -20^{\circ} + 5(-5^{\circ}) = -20^{\circ} - 25^{\circ} = -45^{\circ}$					
	= The temperatures on the other five days are					
	– 20°C, -25° C, -35° C, -40° C and -45° C.					
	OR					
	A man borrows \gtrless 8000 and agrees to repay with a total interest of \gtrless 1360 in 12 monthly instalments. Each instalment being less than the preceding one by ∓ 40					
	Find the amount of the first and last instalment.					
Ans.	i. The instalments are in A.P.					
	Amount repaid in 12 instalments (S_{12})					
	=Amount borrowed + total interest					
	= 8000 + 1360					
	$\therefore S_{12} = 9360$					
	Number of instalments $(n) = 12$					
	Each instalment is less than the preceding one by $\gtrless 40$.					
	$\therefore u = -40$					

	$\begin{split} \ddot{u} S_n &= \frac{n}{2} [2a + (n-1)d] \\ \therefore S_{12} &= \frac{12}{2} [2a + (12-1)(-40)] \\ \therefore 9360 &= 6[2a + (11)(-40)] \\ \therefore 9360 &= 6(2a - 440) \\ \therefore 9360 &= 6(2a - 440) \\ \therefore 1560 &= 2a - 440 \\ \therefore 1560 + 440 &= 2a \\ \therefore 2000 &= 2a \\ \therefore 2000 &= 2a \\ \therefore a &= \frac{2000}{2} \\ \therefore a &= 1000 \\ & \mbox{ii} t_n &= a + (n-1)d \\ \therefore t_{12} &= 1000 + (12-1)(-40) \\ &= 1000 + 11(-40) \\ &= 1000 - 440 \\ \therefore t_{12} &= 560 . \\ \therefore \ Amount of the first instalment is ₹ 1000 and that of the last instalment is ₹ 560. \end{split}$	
33. Ans.	A Solid is in the form of a circular cone mounted on a hemisphere. The radius of the hemisphere is 2.1 cm and the height of the cone is 4 cm. The solid is placed in a cylindrical tub full of water, in such a way that the whole solid is submerged in water. If the radius of the cylinder is 5 cm and its height is 9.8 cm, find the volume of the water left in the cylindrical tub. Radius of hemisphere and cone (r) = 2.1 cm height of cone (h) = 4 cm Vol. of solid = Vol. of hemisphere + Vol. of cone $= \frac{2}{3}\pi r^3 + \frac{1}{3}\pi r^2 h \qquad = \frac{2}{3} \times \pi \times (2.1)^3 + \frac{1}{3} \times \pi \times (2.1)^2 \times 4$ $= \frac{1}{3}\pi (2.1)^2 [2(2.1) + 4] \qquad = \frac{1}{3} \times \pi \times 2.1 \times 2.1 (4.2 + 4)$ $= \frac{1}{3} \times \frac{22}{7} \times 2.1 \times 2.1 \times 8.2 = 22 \times 0.7 \times 0.3 \times 8.2 = 37.884 \text{ cm}^3.$ Also, Radius of cylindrical tub = 5 cm	5

Height of cylindrical tub = 9.8 cmVol. of cylindrical tub $=\frac{22}{7} \times (5)^2 \times 9.8) = 22 \times 25 \times 1.4 = 770 \text{ cm}^3.$ When the solid is submerged in the tub then vol. of water left = Vol. of cylinder tub – Vol. of solid = 770 - 37.884=732.116 cm³ \therefore Vol. of water left = 732.116 cm³ 34. 5 If the length of a rectangle is increased by 2 cm and width by 3 cm, its area is increased by 35 cm². If the length and width are decreased by 2cm each, the area is descreased by 18.4 cm². Find the dimensions of the rectangle. Ans. Let length of rectangle be x cm & breadth be y cm. \therefore Original area of rectangle = xy (x+2)(y+3) = xy+35 ---- Ist condition $\therefore xy + 3x + 2y + 6 = xy + 35$ $\therefore 3x + 2y + 6 = 35$ $\therefore 3x + 2y = 29$ ---(i) (x-2)(y-2) = xy - 18.4 --- IInd condition $\therefore -2x - 2y + 4 = -18.4$ $\therefore xy - 2x - 2y + 4 = xy - 18.4$ $\therefore -2x - 2y = -22.4$ ---(ii) adding equation (i) & (ii) x = 6.6Put x = 6.6 in equation (i) therefore 3(6.6) + 2y = 29 $\therefore 19.8 + 2y = 29$ $\cdot 2v = 9.2$: y = 4.6 \therefore Length = 6.6 cm and breadth = 4.6 cm. OR A man travels 300 km partly by train and partly by car. He takes 4 hours if the travels 60 km by train and the rest by car. If he travels 100 km by train and the remaining by car, he takes 10 minutes longer. Find the speeds of the train and the car separately. Ans. Let the speed of the train = x km/hrLet the speed of the car = y km/ hrAccording to the Question, $\frac{60}{x} + \frac{240}{v} = 4$...(i) ... \because Time = $\frac{\text{Distance}}{\text{Speed}}$ $\frac{100}{x} + \frac{200}{y} = \frac{25}{6} \dots (ii) \dots \left[\because 4 \text{ hr} + 10 \text{ min.} \\ = 4 + \frac{10}{60} = \frac{25}{6} \text{ hr.} \right]$ Multiplying (i) by 5 and (ii) by 6, we get $\frac{300}{x} + \frac{1200}{y} = 20$

	$\frac{\pm \frac{600}{x} \pm \frac{1200}{y}}{= -5}$ $\frac{-300}{x} = -5$ $5x = 300 \therefore$ Putting the value of x $\frac{60}{60} + \frac{240}{y} = 4 \implies$ $3y = 240 \implies$ \therefore Speed of the train and Speed of the car	$\frac{-25}{x} = 60$ in (i), we get $\frac{240}{y} = 4 - 1$ y = 80 = 60 km/hr = 80 km/hr					
35.	Find the mean mar	ks of students f	for the follo	wing distribu	ution :		5
		Marks	No. of	f Students			
		0 and above 10^{-1}	e	80			
		10 and above	ve	77			
		20 and abo	ve	12 65			
		40 and abo	ve	55			
	40 and above		ve	43			
		60 and abo	ve	28			
		70 and abo	ve	16			
		80 and abo	ve	10			
		90 and abo	ve	8			
		100 and abo	ove	0			
	_	2					
Ans	Marks	Cumulative	Class	Class	Frequency	f.x.	
1115.		Frequency	Interval	Mark (x _i)	(f _i)	-11	
	0 and above	80	0-10	5	80 - 77 = 3	15	
	10 and above	77	10 - 20	15	77 - 72 = 5	75	
	20 and above	72	20 - 30	25	72 - 65 = 7	175	
	30 and above	65	30 - 40	35	65 - 55 = 10	350	
	40 and above	55	40-50	45	55 - 43 = 12	540	
	50 and above	43	50-60	55	43 - 28 = 15	825	
	60 and above	28	60 - 70	65	28 - 16 = 12	780	
	/U and above	16	/0 - 80	05	10 - 10 = 6	450	
	80 and above	10 o	80 - 90	85 05	10 - 8 = 2	1/0	
	100 and above	0 0	100 110	93 105	$0 = 0 = \delta$		
		U Total	100-110	105	0 80	4140	
		10181			00	4140	

$$r^{2} = \frac{2100}{11}$$

$$\frac{1}{3}\pi^{2}h = 3000$$

$$\frac{1}{3} \times \frac{2}{7} \times \frac{2400}{7} \times h = 3000$$
200 h = 3000
200 h = 3000
h = $\frac{3600}{2800}$
h = 15m.
C) The height of cone is 48cm and the radius of its base is 36cm. Find the curved surface area (take $\pi = 3, 14$).
Ans.
h = 48 cm h = $r = 36$ cm
l² = h² + r²
l² = 48t + 36²
= 2304 + 1296
= 3600
l = $\sqrt{3600}$
l = 60 cm
 \therefore The curved surface area = πrl
 $\pi rl = 3.14 \times 36 \times 60 = 6782.4 \text{ cm}^{2}$
If the curved surface area $= \pi \pi rl$
l = $3.14 \times 36 \times 60 = 6782.4 \text{ cm}^{2}$
If the curved surface area = πrl
l = $12320 = \frac{22}{7} \times 56 \times 1$
l = $\frac{123200 \times 7}{22 \times 56}$
l = $1 = 70$ cm

	x = ?					
	$\frac{AD}{AD} = \frac{AE}{AE}$					
	$\overline{BD} - \overline{EC}$					
	$\frac{4x-3}{3x-1} = \frac{8x-7}{5x-3}$					
	(4x-3)(5x-3) = (8x-7)(3x-1)					
	4x(5x-3) - 3(5x-3) = 8x(3x-1) - 7(3x-1)					
	$20x^2 - 12x - 15x + 9 = 24x^2 - 8x - 21x + 7$					
	$20x^2 - 27x + 9 = 24x^2 - 29x + 7$					
	$24x^2 - 29x + 7 - 20x^2 + 27x - 9 = 0$					
	$4\mathbf{x}^2 - 2\mathbf{x} - 2 = 0$					
	$2x^2 - x - 1 = 0$					
	$2x^2 - 2x + x - 1 = 0$					
	2x(x-1) + 1(x-1) = 0					
	(x-1)(2x+1) = 0					
	$x = 1$ $x = \frac{1}{1}$.					
	2 A					
c)	In the given Fig., DE BC and $\frac{AD}{DR} = \frac{3}{5}$.	2				
A	If AC = 4.8cm, then find AE.					
Ans.	$\frac{AD}{BD} = \frac{AE}{EC}$					
	AE = x					
	AC = AE + EC					
	4.8 = x + EC					
	EC = 4.8 - x					
	$\frac{3}{5} = \frac{x}{4.8 - x}$					
	3(4.8 - x) = 5x					
	14.4 - 3x = 5x					
	8x = 14.4					
	$x = \frac{\frac{1.8}{14.4}}{\frac{8}{1}}$					

