

Cell Cycle and Cell Division SOLUTIONS

LEVEL-I (★CLASS WORK)

INTRODUCTION TO PHASES OF CELL CYCLE

- **1.** Select the incorrect statement
 - (1) Yeast can progress through the cell cycle in about 90 minutes
 - (2) DNA synthesis is a continuous process in cell cycle
 - (3) Duration of I-phase in the cell cycle is more than 95%
 - (4) Events of cell cycle are under genetic control

DNA synthesis takes place only during S-phase of Interphase.

2. A typical eukaryotic cell cycle is illustrated by human cells in culture. These cells divide once in approximately every

(1) 24 hours

(2) 90 minutes

(3) 20 minutes

(4) 9 hours

A typical eukaryotic cell cycle is illustrated by human cells in culture. These cells divide once in approximately every 24 hours

INTERPHASE

- 3. Select the correct statement
 - (1) Chromosoms decondense and lose their individuality during anaphase
 - (2) Spindle fibres attach to kinetochores of chromosomes during early prophase
 - (3) Centriole begins to move towards opposite poles of the cell during metaphase
 - (4) DNA is replicated during S-phase of cell cycle

The correct statement -DNA synthesis takes place only during S-phase of Interphase.

4. Cells that do not divide further exit G_1 phase to enter an inactive stage called

(1) G_2 phase

(2) G_0 stage

(3) S-phase

(4) M-phase

Cells that do not divide further exit G_1 phase to enter an inactive stage called G_0 stage.

- **5.** Choose incorrect statement w.r.t. cell cycle
 - (1) Duration of cell cycle can vary from organism to organism
 - (2) Duration of cell cycle is uniform in different cell types of an organism
 - (3) Events of cell cycle are under genetic control
 - (4) It is divided into two basic phases

Duration of cell cycle can vary from organism to organism and also from cell type to cell type.

- **6.** Choose the correct sequence w.r.t. different phases of cell cycle
 - (1) G_1, S, G_2, M

(2) G_1, G_2, S, M

(3) M, G_2 , G_1 , S

(4) S, M, G_2 , G_1

Correct sequence w.r.t. different phases of cell cycle G₁, S, G₂, M

- 7. Human nerve cells do not divide after birth and they remain throughout their life in which phase of cell cycle?
 - (1) M-phase (3) G₀ phase

(2) G₁ phase

(4) Invisible phase

Human nerve cells do not divide after birth and they remain throughout their life in G₀ phase.

8. Various phases of cell cycle are controlled by

- (1) Cyclin proteins
- (2) Cyclin dependent protein kinases
- (3) Phosphorylation of cyclin dependent protein kinases
- (4) More than one option is correct

Various phases of cell cycle are controlled by Cyclin dependent protein kinases and its phosphorylation.

- **9.** Amount of DNA and Number of chromosomes in G_2 phase of cell cycle would be
 - (1) Double and equal to that of in G₁ phase respectively
 - (2) Half and equal to that of in G_1 phase respectively
 - (3) Equal and half to that of in G_1 phase respectively
 - (4) Double and double to that of in G_1 phase respectively

Amount of DNA and Number of chromosomes in G_2 phase of cell cycle would be Double and equal to that of in G_1 phase respectively as it has crossed the S-phase wherein DNA replication occurs.

- **10.** Select the correct statement
 - (1) Human cells divide once in approximately every 24 hours
 - (2) Centrioles duplicates in the cytoplasm during G_2 phase
 - (3) In the quiescent stage cells remain metabolically inactive
 - (4) During G_1 stage cell is metabolically active but does not grow

Centrioles duplicates in the cytoplasm during S – phase

In the quiescent stage cells remain metabolically active

During G_1 – stage cell is metabolically active and also grows.

- 11. In which of the following stage, cells remain metabolically active but no longer proliferate unless called on to do so depending on the requirement of the organism?
 - (1) G_1

(2) S

(3) G_2

(4) G_0

In G₀ phase, cells remain metabolically active but no longer proliferate unless called on to do so depending on the requirement of the organism.

MITOSIS

- **12.** (1) Most dramatic period of cell cycle involving a major reorganization of virtually all components of the cell
 - (2) It represents the phase when the actual cell division occurs

These statements (A & B) are concerned with

(1) S-phase

(2) G₁-phase

(3) M-phase

(4) G₂-phase

Both statements are related to M-phase.

- **13.** Select the odd one out w.r.t. mitosis
 - (1) It helps the organisms in both sexual and asexual reproduction
 - (2) It is called equational division
 - (3) It takes place only in diploid cells of plants
 - (4) It helps in cell repair

Mitosis is also seen in haploid cells.

- **14.** Nuclear envelope, nucleolus, endoplasmic reticulum and golgi complex disappear from a dividing cell at the
 - (1) Early prophase

(2) Start of anaphase

(3) End of telophase

(4) Late prophase

Nuclear envelope, nucleolus, endoplasmic reticulum and golgi complex disappear from a dividing cell at the late prophase.

15.	Chromosomes clusters at spindle poles and their (1) Interphase (3) Anaphase assomes clusters at spindle poles and their identify	(2) (4)	Prophase Telophase
16.	The attachment of spindle fibre to kinetochores (1) Metaphase (3) Early prophase	(2) (4)	Anaphase Telophase
The at	tachment of spindle fibre to kinetochores of chror	noso	mes is the key feature of Metaphase.
17.	Interkinesis stage of cell cycle (1) Is generally short lived (3) Is generally long lived inesis stage of cell cycle is generally short lived.		Shows DNA duplication Is followed by prophase-I
18. Zygote	Select the mismatched pair (1) Leptotene – Compaction of chromosomes c (2) Zygotene – Appearance of recombination n (3) Diplotene – beginning of dissolution of syntaxion (4) Diakinesis – Complete terminalisation of chance – Appearance of Synaptonemal complex	<mark>odule</mark> aptor	<mark>es</mark> nemal complex
	Microtubules from opposite poles of the spindle during (1) Pachytene (3) Metaphase – II tubules from opposite poles of the spindle attach thase – II	(2) (4)	Metaphase – I Early prophase
20.	Exchange of genetic material between two home (1) Leptotene (3) Pachytene nge of genetic material between two homologous	(2) (4)	Diakinesis Diplotene
-	How many meiotic divisions are required to prod (1) 100 (3) 25 Educe a seed or grain or embryo or zygote the number of 50 wheat grains,63 meiotic divisions are required the following four statements 1, 2, 3 & 4 statements. 1. First two stages of prophase I are relatively 2. Meiosis II is initiated immediately after kar 3. Meiosis increases the genetic variability in to the next 4. In plants, mitotic cell division is only seen in (1) 2 & 3	(2) (4) aber (2) and short yokir the po	200 63 of meiotic divisions required are n+n/4. select the right option having both correct lived compared to pachytene nesis of meiosis I opulation of organisms from one generation cloid cells 3 & 4
The co	(3) 1 & 3 prrect statements are -	(4)	2 & 4

1. First two stages of prophase I are relatively short lived compared to pachytene. 3. Meiosis increases the genetic variability in the population of organisms from one generation to the next. 23. Exchange of genetic material between non-sister chromatids of homologous chromosomes in pachytene stage is facilitated by (2) Recombinase (1) Dynein (3) Chiasmata (4) Calmodulin Exchange of genetic material between non-sister chromatids of homologous chromosomes in pachytene stage is facilitated by Recombinase. 24. How many meiotic divisions are required to form 16 grains of wheat? (2) 20 (4) 32 To produce a seed or grain or embryo or zygote the number of meiotic divisions required are n+n/4. Thus for 16 wheat grains, 20 meiotic divisions are required. 25. Final stage of meiotic prophase I (1) Is marked by terminalisation of chiasmata (2) Represents chiasmata formation (3) Can last for months or years in oocytes of some vertebrates (4) Involves the development of synaptonemal complex Final stage of meiotic prophase I (Diakinesis) is marked by terminalisation of chiasmata Chromatid separation, shape of chromosome and karyotype can be observed respectively in 26. (1) Anaphase I, Anaphase II and Metaphase (2) Anaphase, Metaphase and Metaphase (3) Anaphase and Anaphase I (4) Metaphase and Anaphase Chromatid separation is seen during Anaphase and Anaphase II; Shape of chromosome and karyotype can be seen during Metaphase. Crossing over is an enzyme dependent process and the enzyme complex involved is called as 27. (1) Cyclin dependent kinase (2) Nitrogenase (3) Recombinase (4) Adenylate kinase Crossing over is an enzyme dependent process and the enzyme complex involved is called as Recombinase 28. If microspore of an angiospermic plant has 7 pg of DNA in its nucleus. How much DNA would be microspore mother cell of this plant have in the diakinesis stage of meiosis? (1) 14 pg (2) 28 pg (3) 7 pg (4) 56 pg Microspore is haploid. n = 7pg of DNA2n cell should have 14pg of DNA, but during Diakinesis as the DNA content is double, thus, DNA content is 28pg. 29. Synaptonemal complex is (1) Required for synapsis (2) Formed in zygotene (3) Formed between sister chromatids (4) More than one option is correct Synaptonemal complex is- formed in zygotene between sister chromatids and is required for Synapsis. **30.** Match the following

Column II

Column I

- 1. Spireme stage
- 2. Decondensation
- 3. Movement of chromatids
- 4. Congression
- (1) 1-i, 2-ii, 3-iii, 4-iv
- (3) 1 iii, 2 i, 3 iv, 4 ii

- i) Telophase
- ii) Metaphase
- iii) Prophase
- vi) Anaphase
- (2) 1-i, 2-iii, 3-iv, 4-ii
- (4) 1 iii, 2 ii, 3 iv, 4 i

Prophase shows spireme stage; Decondensation is seen during Telophase; Movement of chromatids is seen during Anaphase; Congression is seen during Metaphase.

- 31. Double metaphasic plate in meiosis develops during
 - (1) Metaphase I

(2) Metaphase II

(3) Anaphase I

(4) Anaphase II

Double metaphasic plate in meiosis develops during Metaphase I

- **32.** During pole ward movement of separated daughter chromosomes at anaphase
 - (1) Their ends are toward poles and centromere toward equator
 - (2) Their ends are toward equator and centromere toward pole
 - (3) Interzonal fibres contract and pull chromosomes
 - (4) Sister chromatids are pulled on same pole by kinetochore fibre

During pole ward movement of separated daughter chromosomes at anaphase, their ends are toward equator and centromere toward pole.

- 33. How many meiotic divisions are required to produce 100 seeds in typical dicot plant?
 - (1) 125

(2) 126

(3) 127

(4) 128

To produce a seed or grain or embryo or zygote the number of meiotic divisions required are n+n/4. Thus for 100 seeds,125 meiotic divisions are required.

CYTOKINESIS

- **34.** Plant cells do not divide their cytoplasm by forming a furrow in cell membrane like animal cells rather they divide by cell plate because
 - (1) Plant cell do not have centrioles
 - (2) Cell wall formation beings with formation of cell plate
 - (3) Cell plate represents middle lamella between the walls of two adjacent cells
 - (4) Plant cells are enclosed by a relatively inextensible wall

Plant cells do not divide their cytoplasm by forming a furrow in cell membrane like animal cells rather they divide by cell plate because, plant cells are enclosed by a relatively inextensible wall

LEVEL-II (HOME WORK)

INTRODUCTION TO CELL CYCLE

- 1. Cell division proper lasts for only about one hour out of the average duration of 24 hours of cell cycle in humans, where
 - (1) The interphase lasts more than 95% of the duration
 - (2) The M-phase lasts more than 95% of the duration
 - (3) The interphase lasts less than 5% of the duration
 - (4) The G₁ phase last for about 95% of the duration

Cell division proper lasts for only about one hour out of the average duration of 24 hours of cell cycle in humans, where the interphase lasts more than 95% of the duration.

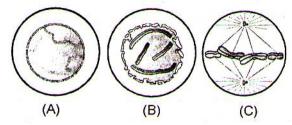
INTERPHASE

2. Cells in _____ remain metabolically active but no longer proliferate unless called on to do so, depending on the requirement of the organism

1/4	CE	Cell Cycle & Cell Division	Bot. XI
	(1) G ₁ phase	(2) G_0 stage	
	(3) Quiescent stage	(4) More than one option is correct	
Cells i	in G ₀ stage or Quiescent stage re	main metabolically active but no longer proliferate unless	called
	on to do so, depending on the re	quirement of the organism.	
3.	- · · · · · · · · · · · · · · · · · · ·	in cell, the time taken by mitotic phase is approximately	
	(1) 25% of total time	(2) 50% of total time	
	(3) 95% of total time	(4) 5% of the total time	
In con	•	the time taken by mitotic phase is approximately 5% of th	e total
	time.		
4	If the initial amount of DNIA in	C shows of a dividing call is 2C than it becomes 4C in S	
4.		G ₁ phase of a dividing cell is 2C then it becomes 4C in S	pnase
	of cell cycle, which results in (1) Increase in chromosome nu	mbor by two times	
	(2) No change in chromosome		
	(3) Decrease in chromosome n		
	(4) Increase in chromosome nu		
If the		se of a dividing cell is 2C then it becomes 4C in S phase	of cell
II the	cycle, which results in no change		or cen
	eyele, which results in no chang	e in cinomosome namoci.	
5.	After S-phase of interphase		
	(1) Amount of both chromosor	nes and DNA get doubled	
		ouble but that of DNA remains same	
		emain same but that of DNA gets doubled	
	(4) Amount of both DNA and		
After		chromosomes double but that of DNA remains same.	
	r in r		
6.	G ₀ or quiescent stage is concern	ed with which one of the features?	
	(1) Cells are proliferating at slo		
	(2) Appears after S-phase		
	(3) Cells do not proliferate unle	ess called on to do so dependent on requirement of organism	<mark>m.</mark>
	(4) Meristematically and metal	oolically inactive cells	
In G ₀	or quiescent stage cells, do not p	roliferate unless called on to do so dependent on requirem	ent of
	organism.		
7.	Most dramatic phase of cell cyc		
	(1) G_1 (2) S	(3) G_2 (4) M	
	dramatic phase of cell cycle is M-	phase.	
MITO			
8.	Longest phase of cell division is		
	(1) Prophase	(2) Anaphase	
	(3) Metaphase	(4) Telophase	
Longe	est phase of cell division is Propha	se	
•	*****		
9.	<u> </u>	referred to study the shape of chromosomes?	
	(1) Metaphase	(2) Anaphase	
3.6	(3) Telophase	(4) Prophase	
Metap	hase is preferred to study the shap	be of chromosomes	
10	Identity of June 1997	as discuste alamant in	
10.	Identity of chromosomes is lost		
	(1) Telophase	(2) Anaphase	
	(3) Metaphase	(4) Prophase	

In Telophase, chromosomes is lost as discrete element.

- **11.** Which phase is regarded as reverse of prophase?
 - (1) Telophase


(2) Interphase

(3) Anaphase

(4) metaphase

Telophase is regarded as reverse of prophase

12. Identify A, B, C and D stages of mitosis in the figure given below

- (1) A Late prophase; B Early prophase; C Transition to metaphase
- (2) A Early prophase; B Late prophase; C Metaphase
- (3) A Early prophase; B Anaphase; C Metaphase
- (4) A Interphase; B Prophase; C Metaphase

The correct labelling is as mentioned in option 2.

- 13. Identify the stage of cell division shown in given figure
 - (1) Early prophase
 - (2) Transition stage between G₂ and early prophase
 - (3) Prophase I
 - (4) Late prophase

The given diagram is of late prophase.

MEIOSIS

- **14.** Diplotene stage is initiated by
 - (1) Synaptonemal complex development
 - (2) Dissolution of synaptonemal complex
 - (3) Disappearance of nuclear membrane and nucleolus completely
 - (4) Starting of spindle formation

Diplotene stage is initiated by dissolution of synaptonemal complex.

- **15.** Find odd one w.r.t. meiotic cell cycle
 - (1) DNA replication occurs once only i.e., before Gap 2
 - (2) Karyokinesis occurs twice
 - (3) Reduction of ploidy at metaphase I
 - (4) Crossing over in tetrad stage

Reduction of ploidy occurs at anaphase – I

- **16.** How many meiosis are required to form 80 seeds in a dicotyledonous plant?
 - (1) 80

(2) 100

(3) 160

(4) 20

To produce a seed or grain or embryo or zygote the number of meiotic divisions required are n+n/4. Thus for 80 seeds,100 meiotic divisions are required.

- 17. The final stage of meiotic prophase I is marked by
 - (1) Terminalisation of chiasma

- (2) Disappearance of nuclear envelope and nucleolus
- (3) No synthesis of RNA
- (4) More than one option is correct

The final stage of meiotic prophase I is marked by Terminalisation of chiasma and Disappearance of nuclear envelope and nucleolus.

- **18.** Select an incorrect match
 - (1) Leptotene Chromatid appears
- (2) Zygotene Synapsis occurs
- (3) Pachytene Tetrad appears
- (4) Diplotene Chiasmata appears

Leptotene – condensation of chromosome is seen

- **19.** The diad of cells is visible at
 - (1) Anaphase I

(2) Telophase – I

(3) Metaphase – I

(4) Telophase – II

The two haploid cells are visible during Telophase -1

- **20.** During meiotic division
 - (1) Two cycles of nuclear and cellular division occur
 - (2) Two turns of DNA replication occur
 - (3) Four diploid cells occur at the end of meiosis –II
 - (4) Separation of homologues occurs at anaphase II

During meiotic division, Two cycles of nuclear and cellular division occur

21. Find the number of chromosomes and content value respectively of DNA in a daughter of meiosis – II, if the cell entering meiosis has 20 chromosomes and 20 picogram DNA

(1) 20, 10

(2) 10, 20

(3) 10, 5

(4) 10, 10

Cell entering meiosis(2n cell) chromosome -20; thus the haploid end product will be with 10 chromosomes.

Cell entering meiosis has 20 pg of DNA, thus during S-phase DNA content will double to 40pg and eventually divided amongst 4 cells as 10 pg each.

- **22.** Meiosis differs from mitosis in
 - (1) Not having two cytokinesis
 - (2) Showing half the number of chromosomes at anaphase I
 - (3) Showing no splitting of centromere
 - (4) No disappearance of nucleolus and NM

Meiosis differs from mitosis in Showing half the number of chromosomes at anaphase – I

- 23. During meiosis II
 - (1) Sister chromatids separates

(2) Crossing over occurs

(3) Homologous chromosomes separate

(4) DNA synthesis occurs

During meiosis II - Sister chromatids separates.

- 24. If the DNA content of a spore is 2 picogram, then the DNA content in its spore mother cell (2n) at G_2 phase will be
 - (1) 2 picogram

(2) 1 picogram

(3) 4 picogram

(4) 8 picogram

Haploid cell has 2pg DNA content.

Its diploid cell will have 4pg DNA content when it enters the Meiosis, which will be doubled during Sphase, thus during G2 phase its DNA content will be 8 pg.

- **25.** An event not associated with anaphase I of meiosis is
 - (1) Polar movement of bivalent chromosomes
 - (2) Division of centromere
 - (3) Chromosomal movement along tractile fibres
 - (4) Sister chromatids remain associated at their centromeres.

During Anaphase I, homologous chromosomes separate.

- **26.** During which phase of meiosis recombination nodules are observed?
 - (1) Pachytene

(2) Zygotene

(3) Diplotene

(4) diakinesis

Recombination nodules are observed during Pachytene.

CYTOKINESIS

- 27. In plant cytokinesis, cell plate grows
 - (1) Centripetally

(2) Centrifugally

(3) Terminally

(4) At random

In plant cytokinesis, cell plate grows Centrifugally.

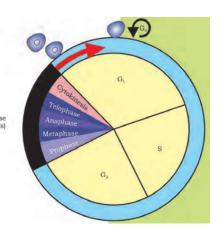
- **28.** Position of future cell plate formation is determined by
 - (1) Non contractile hollow filaments of acidic proteins
 - (2) Intermediate filaments
 - (3) Microtubules
 - (4) Microfilaments

Position of future cell plate formation is determined by Microtubules

MISCELLANEOUS

- 29. (1) Cell plate represents middle lamella between the secondary walls of adjacent plant cells
 - (2) In some lower plants and some social insects, haploid cells divide by mitosis
 - (3) Mitosis occurs in meristematic cells
 - (1) (1), (3) are incorrect

(2) (2), (3) are correct


(3) All are incorrect

(4) (1), (2) are correct

Cell plate represents middle lamella between the walls of adjacent plant cells.

- **30.** Examine the figure given below and select the part correctly matched with its function
 - (1) Part (B): G₂ synthesis of DNA
 - (2) Part (D): G₀ cell differentiation
 - (3) Part (A): G₁ replication of DNA
 - (4) Part (C): cytokinesis Formation of cell plate in plant cells.

Part C represents Cytokinesis, wherein cell plate formation is observed.

PREVIOUS YEARS QUESTIONS (*HOME WORK)

1. In 'S' phase of the cell cycle

[AIPMT 2014]

- (1) Chromosome number is increased.
- (2) Amount of DNA is reduced to-half in each cell.

- (3) Amount of DNA doubles in each cell.
- (4) Amount of DNA remains same in each cell.

In 'S' phase of the cell cycle,DNA replication takes place.

2. The enzyme recombinase is required at which state of meiosis

[AIPMT 2014]

- (1) Diplotene
- (2) Diakinesis
- (3) Pachytene
- (4) Zygotene

Recombinase is required during Pachytene.

3. A stage in cell division is shown in the figure. Select the answer which gives correct identification of the stage with its characteristics. [AIPMT 2013]

(1)	Telophase	Endoplasmic reticulum and nucleolus not reformed yet.
(2)	Telophase	Nuclear envelop reforms
(3)	Late anaphase	Chromosomes move away from equatorial plate, golgi
		complex not
		present
(4)	Cytokinesis	Cell plate formed, mitochondria distributed between two
		daughter cells.

NCERT XI Pg.no.166

4. Meiosis takes place in

[AIPMT 2013]

- (1) Megaspore
- (3) Conidia

- (2) Meiocyte
- (4) Gemmule

Meiosis takes place in Meiocyte

- 5. The complex formed by a pair of synpased homologous chromosomes is called [AIPMT 2013]
 - (1) Axoneme

(2) Equatorial plate

(3) Kinetochore

(4) Bivalent

The complex formed by a pair of synpased homologous chromosomes is called Bivalent.

- 6. Identify the meiotic stage in which the homologous chromosomes separate while the sister chromatids remain associated at their centromeres. [AIPMT 2012]
 - (1) Metaphase I

(2) Metaphase II

(3) Anaphase I

(4) Anaphase II

The meiotic stage in which the homologous chromosomes separate while the sister chromatids remain associated at their centromeres Anaphase I.

7. Given below is the representation of a certain event at a particular stage of a type of cell division. Which is this stage? [AIPMT 2012]

- (1) Both prophase and metaphase of mitosis
- (2) Prophase I during meiosis

		Dividion	DOC: AL
	(3) Prophase II during meiosis		
NCE	(4) Prophase of Mitosis RT XI Pg.no.169		
NCE	MI AI Fg.110.109		
8.	During gamete formation, the enzyme recombin (1) Prophase – II (3) Anaphase – II	nase participates during (2) Metaphse – I (4) Prophase – I	[AIPMT 2012]
Durin	g gamete formation, the enzyme recombinase part	ticipates in Prophase – I.	
9.	How many chromosomes will the cell have at G has 14 chromosomes at interphase? (1) 14, 14, 7	(2) 14, 14, 14	ase respectively, if it [DUMET 2011]
A.C.	(3) 7,7,7	(4) 7, 14, 14.	
After	S phase,DNA content doubles but chromosome no	umber remains the same.	
10.	Colchicine arrests spindle at (1) Anaphase (2) Prophase		[OJEE 2011]
Colch	(3) Telophase icine arrests spindle at Metaphase.	(4) Metaphase	
11.	Which of the protein is found in spindle fibre? (1) Tubulin (3) Mucin in protein is found in spindle fibre.	[OJEE 2011] (2) Albumin (4) Hemoglobin.	
Tuoui	in protein is round in spindle flore.		
12.	Chromatid formation takes place in (1) S-phase (3) G ₁ – phase	(2) Metaphase(4) G₂ – phase.	[OJEE 2011]
Chror	natid formation takes place in S-phase.	() - 1	
13.	Centriole duplication takes place in the cytoplas (1) G_1 – phase c) G_0 – phase iole duplication takes place in the cytoplasm during	 (2) G₂ – phase (4) S-phase. 	
14.	Select the correct option with respect to mitosis. (1) Chromatids start moving towards opposite (2) Golgi complex and endoplasmic reticulum (3) Chromosomes move to the spindle equator metaphase (4) Chromatids separate but remains in the cent	poles in telophase are still visible at the end and get aligned along equite of the cell in anaphase	of prophase uatorial plate in
The c	orrect statement is chromosomes move to the splate in metaphase.	pindle equator and get a	aligned along equatorial
15.	Mitotic stages are not observed in		[KCET 2011]

15.

(1) Cosmarium

(2) *E. coli*

(3) Saccharomyces

(4) Chlorella

E. coli lacks a well defined nucleus.

- **16.** Meiosis in a plant occurs when there is a change [UP CPMT 2011]
 - (1) From gametophyte to sporophyte
- (2) From sporophyte to gametophyte
- (3) From gametophyte to gametophyte
- (4) From sporophyte to sporophyte

Meiosis in a plant occurs when there is a change from diploid sporophyte to haploid gametophyte.

17. Synapt	Synaptonemal complex is formed during (1) Pachytene (3) Leptotene conemal complex is formed during Zygotene		Zygotene Diplotene	[OJEE 2011]
18. In Mei	56 cells are produced in meiosis where first divis (1) Equal (3) Mitosis osis, first division is reductional.	(2)	s Reduction None of these	[OJEE 2011]
19.	Longest phase of meiosis, is (1) Prophase-I (3) Anaphase-I st phase of meiosis, is Prophase-I.		Prophase-II Metaphase-II	[WB JEE 2011]
20.	In which stage of the first meiotic division, two s (1) Leptotene (3) Pachytene CT XI Pg.no.166	(2)	chromatids are visib Zygotene Diplotene	le? [WB JEE 2011]
21.	Crossing over is the exchange of genetic material (1) Non-sister chromatids of the homologous chroma (2) Sister chromatids of the homologous chroma (3) chromatids of non-homologous chromosome (4) the genes those are completely linked T XI Pg.no.166	rome osom	<mark>osomes</mark>	[J&K CET 2011]
22. Only 1	Which of the given matches are correct? I. S-phase — DNA replication II. Zygotene — Synapsis III. Diplotene — Crossing over IV. Meiosis — Both haploid and dip V. G ₂ -phase — Quiescent stage (1) I and II only (3) III and V only and 2 are the correct matches.	(2)	cells III and IV only I, III and V only	[Kerala CEE 2011]
23. The sta	The stage between two meiotic division is called (1) Interphase (3) Interkinesis age between two meiotic division is called Interkin	(2) (4)	Cytokinesis Karyokinesis	
24. Only o	During meiosis, the alleles of the parental pair se many allele(s) is/are then transmitted to a gamete (1) Four (3) Six ne allele is transferred in a gamete.	? (2)	te or segregated from [Kerala CEE 2011] Two One	
25.	In which phase, DNA content will be doubled? (1) Interphase	(2)	[OJEE 2010] Anaphase	

(3) Prophase

(4) Telophase

DNA content will be doubled during S phase of interphase.

- **26.** Which phase comes in between the G₁, and G₂ phases of cell cycle? **[WB JEE 2010]**
 - (1) M-phase

(2) G₀-phase

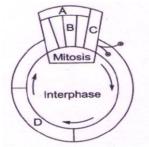
(3) S-phase

(4) Interphase

S-phase comes in between the G_1 , and G_2 phases of cell cycle.

27. Cell division cannot be stopped in which phase of the cell cycle? [WB JEE 2010]

(1) G_1 -phase


(2) G₂-phase

(3) S-phase

(4) Prophase

DNA content will be doubled during S phase of interphase, thus M phase must necessarily be followed.

28. Given below is a schematic break-up of the phases/stages of cell cycle.

Which one of the following is the correct indication of the stage/phase in the cell cycle?

[CBSE AIPMT 2010]

(1) B—Metaphase

(2) C—Karyokinesis

(3) D—Synthetic phase

(4) A—Cytokinesis

D—Synthetic phase is the correct option.

- **29.** Cell plate grows from
 - (1) Centre to the wall

(2) Wall to centre

(3) One wall to another

(4) Furrowing of wall

Cell plate grows from Centre to the wall.

30. In which phase, proteins for spindle fibre are synthesized?

[AMU 2010]

(1) G_1 -phase

(2) G_2 -phase

(3) S-phase

(4) Anaphase

Proteins for spindle fibre are synthesized during G2 phase.

- 31. Which one of the following precedes re-formation of the nuclear envelope during M-phase of the cell cycle? [JCECE 2010]
 - (1) Decondensation from chromosome and reassembly of the nuclear lamina
 - (2) Transcription from chromosomes and reassembly of the nuclear lamina
 - (3) Formation of the contractile ring and formation of the phragmoplast
 - (4) Formation of the contractile ring and transcription from chromosomes

Before re-formation of nuclear envelope decondensation from chromosome and reassembly of the

nuclear lamina is seen.

32. Cells in G_0 -phase of cell cycle

[WBJEE 2010]

- (1) Exit cell cycle
- (3) Suspend cell cycle

(2) Enter cell cycle(4) Terminate cell cycle

Cells in G₀-phase of cell cycle exit cell cycle.

- 33. During mitosis, ER and nucleolus begin to disappear at [CBSE AIPMT 2010]
 - (1) Late prophase(3) Late metaphase

- (2) Early metaphase
- (4) Early prophase

During mitosis, ER and nucleolus begin to disappear at

34. Which stages of cell division do the following figures 'A' and 'B' represent respectively?

(1) Metaphase

Telophase

[CBSE AIPMT 2010]

(2) Telophase

— Metaphase

(3) Late Anaphase

— Prophase

(4) Prophase

Anaphase

The diagram is of late anaphase and prophase.

- **35.** During meiosis-I, the bivalent chromosomes clearly appear as tetrads during
 - (1) Diakinesis

(2) Diplotene

[Kerala CEE 2010]

(3) Leptotene

(4) Pachytene

During meiosis-I, the bivalent chromosomes clearly appear as tetrads during Pachytene.

- **36.** Small disc-shaped structures at the surface of the centromeres that appear during metaphase are
 - (1) Kinetochores

(2) Metaphase plate

[AFMC 2009]

(3) Spindle fibres

(4) Chromatid

Small disc-shaped structures at the surface of the centromeres that appear during metaphase are Kinetochores.

- **37.** What is the correct sequence of the steps given here? Also work out the process depicted in the steps?
 - I. Homologous chromosomes move toward opposite poles of the cell; chromatids do not separate.
 - II. Chromosomes gather together at the two poles of the cell and the nuclear membranes reform.
 - III. Homologous chromosomes pair and exchanges segments.
 - IV. Homologous chromosomes align on a central plate.

V. The haploid cells separate completely.

[AIIMS 2009]

- (1) The correct sequence is $III \rightarrow IV \rightarrow I \rightarrow II \rightarrow V$ and the process is meiosis-I
- (2) The correct sequence is $II \rightarrow I \rightarrow V \rightarrow IV \rightarrow III$ and the process is mitosis

17/	Cell Cyc	cle & Cell Division	Bot.
	(3) The correct sequence is $IV \rightarrow I \rightarrow III -$	→ II→V and the process is meiosis-I	
	(4) The correct sequence is $II \rightarrow V \rightarrow$	-	
The o	correct sequence is $III \rightarrow IV \rightarrow I \rightarrow II \rightarrow V$ and	d the process is meiosis-I	
38.	Chromosomes are arranged along the equ		
	(1) Prophase	(2) Metaphase [BHU 2009]]
Chro	(3) Anaphase mosomes are arranged along the equator du	(4) Telophase	
CIIIO	inosomes are arranged along the equator du	iring Wetaphase.	
39.	Which of the following character is not re	<u>-</u>]
	(1) Formation of nuclear membrane	(2) Formation of nucleolus	
Боли	(3) Elongation of chromosome	(4) Formation of two daughter cells	
FOIII	nation of two daughter cells is seen during T	eropnase.	
40.	In which stage of cell division, chromoso	omes are most condensed? [WB JEE 2	0091
100	(1) Prophase	(2) Metaphase	00>1
	(3) Anaphase	(4) Telophase	
Chro	mosomes are most condensed during Metap	phase.	
41.	Synapsis occurs between	[CBSE AIPMT 2009]	
	(1) A male and a female gamete	(2) mRNA and ribosomes	
	(3) Spindle fibres and centromere	(4) Two homologous chromosomes	
Syna	psis occurs between two homologous chron	nosomes.	
42.	Crossing over occurs at	[UP CPMT 2009]	
	(1) Single strand stage	(2) Two strand stage	
~	(3) Four strand stage	(4) Eight strand stage	
Cross	sing over occurs at Four strand stage.		
43.	Crossing over occurs during	[BHU 2009]]
	(1) Leptotene	(2) Diplotene	
	(3) Pachytene	(4) Zygotene	
Cross	sing over occurs during Pachytene.		
44.	Recombination is involved in the process	s of [DUMET 2	009]
	(1) Cytokinesis	(2) Spindle formation	
	(3) Crossing over	(4) Chromosome duplication	
Reco	embination is involved in the process of Cro	ssing over.	
45.	Which of the following is unique to mito	sis and not a part of meiosis? [DUMET 2	009]
	(1) Homologous chromosomes behave i	independently	
	(2) Chromatids are separated during ana		
	(3) Homologous chromosomes pair and		
	(4) Homologous chromosomes crossove	er	

Homologous chromosomes behave independently during Mitosis.

The non-sister chromatids twist around and exchange segments with each other during 46.

(1) Diplotene

(2) Diakinesis

[Kerala CEE 2009]

(3) Leptotene

(4) Pachytene

The non-sister chromatids twist around and exchange segments with each other during Pachytene.

47.	When synapsis is complete all along the chromo called (1) Zygotene (3) Diplotene	[JC (2)	ne, the cell is said to have entered a stage CECE 2009] Pachytene Diakinesis	
When Pachyt	synapsis is complete all along the chromosome, the	` ′		
48. The co	Pick out the correct statements. I. Mitosis takes place in the somatic cells and II. During mitosis, the DNA replicates once for replicates twice for two cell divisions. III. Mitosis and meiosis occur both in sexually a (1) I only (2) II only orrect statement is Mitosis takes place in the sor cells.	r one and a	asexually reproducing organisms. (4) I and II only	n
49.	The proteins involved in the movement of chromare [EAMCET 2009]	osoi	omes towards the poles during cell division	
	(1) Actin (3) Tubulin) Myosin) Elastin	
The pr	oteins involved in the movement of chromosomes Tubulin.	` /	•	
50.	I. Bead-like structures are absent on chromosom. II. Displacement of chiasmata occurs in diakin. III. Separation of two basic sets of chromosom. IV. No division of centromere. (1) II, III (3) III, IV The two correct statements with reference to mean Displacement of chiasmata occurs in diakinesis. And Separation of two basic sets of chromosom.	omes esis. es. (2) (4) iosis	[EAMCET 2009] II, IV I, III	
51.	During which stage of meiosis, do the sister chro	mati	tids begin to move towards the poles? [Haryana PMT 2009]	
During	 (1) Prophase-I (3) Anaphase-II g Anaphase-II of meiosis, do the sister chromatids 	(4)) Telophase-I) Anaphase-I	
52.	In cell cycle, during which phase chromosomes		- -	
	(1) Metaphase(3) Telophase	, ,	Anaphase [UP CPMT 2008] Prophase	
In cell	cycle, during Metaphase chromosomes are arrange	ged a	at equatorial plate.	
53.	Replication of centriole occurs during		[BHU 2008]	
Replic	(1) Interphase(3) Late prophaseation of centriole occurs during Interphase.) Prophase) Late telophase	
54.	Chromosome number can be doubled by using w	hich	h of the following? [Punjab PMET 2008]	

	(3) Zeatin	(4)	Colchicine Colchicine	
Chro	mosome number can be doubled by using Colchici	` /	Colemente	
55.	Which of the following events occurs during G ₁ (1) DNA replication (3) Mutation	(2) (4)	se? [Punjab Pl Growth and normal Fertilization	_
Grow	th and normal function of cell occurs during G_1 -p	hase.		
56.	Chromosomes are visible with chromatids at wh (1) Interphase (3) Metaphase	(2) (4)	Prophase Anaphase	[J&K CET 2008]
Chro	mosomes are visible with chromatids during Metap	phase		
57. Diffe	Differentiated cell remains at which stage? (1) G ₁ (3) G ₀ rentiated cell remains in G ₀ .	(2) (4)	$\begin{array}{c} G_2 \\ M. \end{array}$	[DUMET 2007]
58.	A cell plate is laid down during (1) Cytokinesis (3) Interphase		[UP CPMT 2007] Karyokinesis None of these	
A cel	l plate is laid down during Cytokinesis.			
59. Cong	Congression is a phenomenon of (1) Movement of sister chromatids towards the (2) Pairing of homologous chromosomes (3) Separation of paired chromosomes (4) Bringing the chromosomes on equator of spression is a phenomenon of bringing the chromosomes	oindle	apparatus	[AMU 2007]
			•	
60.	Phragmoplast is (1) Proplastid in cytoplasm of dividing cells (2) Cell plate formed by vesicles of ER and dic (3) Cell plate formed by ER, dictyosomes, secr (4) None of the above	tyoso		
Phrag	gmoplast is cell plate formed by ER, dictyosomes,	secre	tory vesicles and spi	ndle fibre
61.	Mitosis is a process by which eukaryotic cells (1) Grow (3) Multiply		[Punjab PMET 20] Get specialized in s Expose the genes	=
Mitos	sis is a process by which eukaryotic cells Multiply.			
62. The r	The number of mitotic cell divisions required to (1) 10 (3) 6 number of mitotic cell divisions required to produce	(2) (4)	12 8	[KCET 2007]
Thus	n=8.			
63.	In meiosis, chromosome number becomes			[UP CPMT 2007]

(1) Half of its parent chromosome

(3) One fourth of its parent chromosome

(2) Same as that of parent chromosome

(4) None of the above

(2) Zygotene

(4) Diakinesis

In which of the following stages, the chromosome is single thin and like long thread?

[AMU 2007]

(1) Leptotene

(3) Pachytene

64.

In meiosis, chromosome number becomes One fourth of its parent chromosome.

The chromosome is single thin and like long thread Leptotene.

65.	In meiosis-I, a bivalent is an association of			[Kerala CEE 2007]
	(1) Four chromatids and four centromeres	` ′	Two chromatids and	
	(3) Two chromatids and one centromere		Four chromatids and	
In mei	osis-I, a bivalent is an association of Four chroma	tids	and two centromeres.	
66.	Crossing over that results in genetic recombination			curs between
		_	anipal 2007]	
	(1) Sister chromatids of bivalent		Non-sister chromati	
C	(3) Two daughter nuclei	` '	Two different bival	
Crossi	ng over that results in genetic recombination in hi chromatids of a bivalent.	gner	organisms occurs be	tween non-sister
	Cirollatids of a divalent.			
67.	Characteristic of meiosis is		[Haryana PMT 20	07]
	(1) Two nuclear and two chromosome divisions	S	L V	•
	(2) Two nuclear and one chromosome division			
	(3) One nuclear and two chromosome divisions			
	(4) One nuclear and one chromosome division			
Chara	cteristic of meiosis is two nuclear and one chromo	som	e division.	
68.	A material, which arrests cell division, is obtained	d fro	am.	[MHTCET 2006]
00.	(1) Crocus		Colchicum	[MITCET 2000]
	(3) Dalbergia		Chrysanthemum	
A mat	erial, which arrests cell division, is obtained from	, ,	•	
69.	Sequence of four phases of cell cycle is			[MHT CET 2006]
	$ \begin{array}{ccc} (1) & G_1 \rightarrow S \rightarrow G_2 \rightarrow M \\ (3) & S \rightarrow G_1 \rightarrow G_2 \rightarrow M \end{array} $	(2)	$G_1 \to G_2 \to S \to M$ $M \to G_1 \to G_2 \to S$	
	$S \rightarrow G_1 \rightarrow G_2 \rightarrow M$	(-)	$M \rightarrow G_1 \rightarrow G_2 \rightarrow S_3$	5
	$(3) \qquad \qquad 1 \qquad \qquad 2 \qquad \qquad $	(4)	1 -1 -2	
	$G_{i} \rightarrow S_{i}$	→G	$A \rightarrow M$	
70	Sequence of four phases of cell cycle is $G_1 \rightarrow S_1$	70 ~4		
70.	The number of DNA strands in chromosome at (1) One (2) Two		lage is Four	[J&K CET 2006] (4) Eight
The m	imber of DNA strands in chromosome at G2-stage	, ,		(4) Light
THC III	amoer of D1V1 strands in enromosome at G2 stage	J 13 1	our	
71.	What is not seen during mitosis in somatic cells?	[DI	U MET 2006]	
	(1) Spindle fibres		Chromosome move	ment
	(3) Disappearance of nucleolus	(4)	<mark>Synapsis</mark>	
Synap	sis is not seen during Mitosis.			
72.	The major event that occurs during the anaphase	of n	nitacie which brings	shout the equal
14.	distribution of chromosomes is	OI II	intosis, which offligs	[KCET 2006]
	(1) Replication of the genetic material	(2)	Splitting of the chro	
	(3) Splitting of the centromeres		Condensation of the	
	The major event that occurs during the anaphase	, ,		
	distribution of chromosomes is Splitting of the co			-
18	COLLEGES: ANDHERI / BORIVALI / CHEMBUR / DADAR / F	KALY	AN / KHARGHAR / NERUL	/ POWAI / THANE

73.	An egg cell has 5 pico gram of DNA in its nucle animal, at the end of G 2-phase of mitosis? (1) 2.5 pico gram (3) 5 g Egg cell (n)=5pg Animal somatic cell (2n)=10pg But after S-phase DNA content doubles hence 2	[Manipal 2006] (2) 5 pico gram (4) 20 pico gram
74.	Cleavage is a unique form of mitotic cell division (1) There is no growth of cells (2) The nucleus does not participate (3) No spindle develops to guide the cells (4) The plasma membranes of daughter cells do	o not separate
75.	haploid chromosome number. In case, the di	
76.	Chiasmata are formed due to (1) Crossing over of same part between homological content of the c	omologous chromosomes logous chromosomes
77.	Which is correct for meiotic metaphase-I? (1) Bivalents are arranged at equator (2) Univalents are arranged at equator (3) Non-homologous chromosomes form pair (4) Spindle fibres are attached at chromomere g Metaphase -I bivalents are arranged at equator.	[Punjab PMET 2006]
78.	Genetic recombination is due to (1) Fertilization and meiosis (3) Fertilization and mitosis ic recombination is due to Fertilization and meios	[MHT CET 2006] (2) Mitosis and meiosis (4) None of these sis.
79. The n	The number of chromosomes becomes half in (1) Anaphase-I (3) Telophase-I umber of chromosomes becomes half in Anaphase	[RPMT 2006] (2) Anaphase-II (4) Telophase-II se-I.
80.	Meiosis can be observed in (1) Tapetal cells (3) Micropores sis can be observed in Spore mother cells.	[BCECE 2006] (2) Megaspores (4) Spore mother cells

81.	Significance of meiosis lies in (1) Reduction of chromosome number to one had (2) Maintaining consistency of chromosome number (3) Production of genetic variability		during sexual reprod	[BCECE 2006] duction
All the	(4) All of the above e statements mentioned are correct.			
82.	The S-phase of cell cycle is characterized by (1) Duplication of chromosome (3) Duplication of DNA Those of cell cycle is characterized by duplication	(4)	[UP CPMT 2005] Shortening of chron Duplication of century	
The S-	phase of cell cycle is characterized by duplication	1 OI L	JNA.	
83. Most o	Most cytogenic activities occur during (1) Interphase (3) Prophase cytogenic activities occur during Interphase.	(2) (4)	Telophase Anaphase	[UP CPMT 2005]
84.	A plant cell has 12 chromosomes at the end of min the G ₂ -phase: of its next cell cycle? (1) 6 (3) 12 nosome number does not double.		njab PMET 2005]	osomes would it have
85. In anir	In animal cells, cytokinesis involves (1) The separation of sister chromatids (2) The contraction of the contractile ring of mi (3) Depolymerization of kinetochore microtubu (4) A protein kinase that phosphorylates other enal cells, cytokinesis involves contraction of the contraction of the contraction of the contraction.	ıles enzyn	nes	
86.	Which of the following serves as mitotic spindle (1) Ca ²⁺ (3) Tubulin cine serves as mitotic spindle poison.	(2)	on? Mg ²⁺ Colchicine	[DUMET 2005]
87.	During mitosis, number of chromosomes in a cell (1) Gets changed (3) May be changed if cell is mature	(2) (4)	Does not change May be changed if	[DUMET 2005]
During	g mitosis, number of chromosomes in a cell does r	not ci	lange.	
88. A dipl	A diploid living organism develops from zygote divisions? [J&K CET 2005] (1) Meiosis (3) Mitosis oid living organism develops from zygote by Mitosis	(2) (4)	Amitosis	owing repeated cell
89.	In meiosis, the daughter cells are not similar to the (1) Crossing over (3) Both (1) and (2)	(2) (4)	Synapsis None of these	
In mei	osis, the daughter cells are not similar to that of p	arent	because of Crossing	over.

Among the following, which one is longest phase in prophase of meiosis? [AMU 2005] (1) Leptotene (2) Zygotene (3) Pachytene (4) Diplotene Diplotene is longest phase in prophase of meiosis. 91. During meiotic division, the [BHU 2005] (1) Homologous chromosomes are separated (2) The non-homologous chromosomes form chiasmata (3) The homologous chromosomes do not segregate (4) All of the above During meiotic division, the homologous chromosomes are separated. 92. [Kerala CEE 2005] Pick out the correct statements. Synapsis of homologous chromosomes takes place during prophase-I of meiosis. II. Division of centromeres takes place during anaphase-I of meiosis. III. Spindle fibres disappear completely in telophase of mitosis. IV. Nucleoli reappear at telophase I of meiosis. (1) 1 only (2) III only (3) I and II only (4) I, III and IV only I, III and IV only are correct statements. 93. Arrange the following events of meiosis in the correct sequence. [EAMCET 2005] 1. Terminalization 2. Crossing over 3. Synapsis 4. Disjunction of genomes The correct sequence is (1) 4, 3, 2, 1 (2) 3, 2, 1, 4 (3) 2, 1, 4, 3 (4) 1, 4, 3, 2 3, 2, 1, 4 is the correct meiotic sequence. 94. During cell division, chromosome attaches with spindle's [Manipal 2005] (1) Kinetochore (2) Centrosome (3) Centriole (4) Secondary constriction During cell division, chromosome attaches with spindle's Kinetochore. 95. In meiosis, division is [Haryana PMT 2005] (1) I reductional and II equational (2) I equational and II reductional (3) Both reductional (4) Bothequational In meiosis, division I is reductional and II equational. 96. Which type of chromosomes segregates when a cell undergoes meiosis? [JCECE 2005] (1) Homologous chromosomes (2) Non-homologous chromosomes (3) Both (1) and (2) (4) Centric and acentric chromosomes Homologous chromosomes segregates when a cell undergoes meiosis. **97.** In the somatic cell cycle, [CBSE AIPMT 2004] (1) In G₁ -phase, DNA content is double the amount of DNA present in the original cell

- (2) DNA replication takes place in S-phase
- (3) A short interphase is followed by a long mitotic phase
- (4) G₂ -phase follows mitotic phase

In the somatic cell cycle, DNA replication takes place in S-phase.

98.	If you are provided with root-tips of onion in yo chromosomes, which of the following stages can		
	chromosomes, which of the following stages can	ı you	[CBSE AIPMT 2004]
	(1) Metaphase		Telephase
During	(3) Anaphase g Metaphase chromosomes are distinctly visible.	(4)	Prophase.
During	g Wetaphase chromosomes are distinctly visible.		
99.	Chiasmata are most appropriately observed in m	eiosi	s during [UP CPMT 2004]
	(1) Diakinesis	, ,	Diplotene
CI :	(3) Metaphase-II	` ′	Pachytene
Chiasi	mata are most appropriately observed in meiosis of	luring	g Diplotene.
100.	During cell division, sometimes there will be fai	lure o	of separation of sister chromatids. This
1001	event is called		erala CEE 2004]
	(1) Interference	_	Complementation
	(3) Non-disjunction	` /	Coincidence
	g cell division, sometimes there will be failure of	separ	ation of sister chromatids. This event is
called	Non-disjunction.		
101.	The second meiotic division leads to		[Haryana PMT 2004]
	(1) Separation of sex chromosomes	(2)	Fresh DNA synthesis
	(3) Separation of chromatids and centromere		Separation of homologous chromosomes
The se	econd meiotic division leads to Separation of chro	matic	ls and centromere.
102	Same and a second in the secon		IDCECE 20041
102.	Synapsis occurs in phase of meiosis.		[BCECE 2004]
	(1) Zygotana	(2)	Diplotono
	(1) Zygotene (3) Pachytene		Diplotene Leptotene
Synap	(3) Pachytene		Diplotene Leptotene
Synap			<u>=</u>
Synap 103.	(3) Pachytene sis occurs in Zygotene phase of meiosis. When number of chromosomes is already reduced.	(4) ed to	Leptotene half in the first reductional division of
	(3) Pachytenesis occurs in Zygotene phase of meiosis.When number of chromosomes is already reducemeiosis, what is the necessity of second meiotic	(4) ed to divis	Leptotene half in the first reductional division of ion? [J&K CET 2004]
	 (3) Pachytene sis occurs in Zygotene phase of meiosis. When number of chromosomes is already reduce meiosis, what is the necessity of second meiotic (1) The division is required for the formation or 	(4) ed to divis f four	half in the first reductional division of ion? [J&K CET 2004] gametes
	 (3) Pachytene sis occurs in Zygotene phase of meiosis. When number of chromosomes is already reducemeiosis, what is the necessity of second meiotic (1) The division is required for the formation o (2) Division ensures equal distribution of haple 	(4) ed to divise four sid ch	half in the first reductional division of ion? [J&K CET 2004] gametes romosomes
	 (3) Pachytene sis occurs in Zygotene phase of meiosis. When number of chromosomes is already reduce meiosis, what is the necessity of second meiotic (1) The division is required for the formation o (2) Division ensures equal distribution of haple (3) Division ensures equal distribution of general 	(4) ed to divis f four oid ch	half in the first reductional division of ion? [J&K CET 2004] gametes romosomes chromosomes
103.	 (3) Pachytene sis occurs in Zygotene phase of meiosis. When number of chromosomes is already reduce meiosis, what is the necessity of second meiotic (1) The division is required for the formation o (2) Division ensures equal distribution of haple (3) Division ensures equal distribution of genes (4) Division is required for segregation of repli 	ed to divise four oid ches on cocated	half in the first reductional division of ion? [J&K CET 2004] gametes romosomes chromosomes chromosomes
103.	 (3) Pachytene sis occurs in Zygotene phase of meiosis. When number of chromosomes is already reduce meiosis, what is the necessity of second meiotic (1) The division is required for the formation o (2) Division ensures equal distribution of haple (3) Division ensures equal distribution of general 	ed to divise f four oid chest on contacted oil in	half in the first reductional division of ion? [J&K CET 2004] gametes romosomes chromosomes the first reductional division of meiosis, the
103.	(3) Pachytene sis occurs in Zygotene phase of meiosis. When number of chromosomes is already reduce meiosis, what is the necessity of second meiotic (1) The division is required for the formation o (2) Division ensures equal distribution of haple (3) Division ensures equal distribution of genes (4) Division is required for segregation of replinumber of chromosomes is already reduced to ha necessity of second meiotic division is for segre	ed to divise f four oid che con cocated alf in gation	half in the first reductional division of ion? [J&K CET 2004] gametes romosomes chromosomes the first reductional division of meiosis, the n of replicated chromosomes.
103.	(3) Pachytene sis occurs in Zygotene phase of meiosis. When number of chromosomes is already reduce meiosis, what is the necessity of second meiotic (1) The division is required for the formation o (2) Division ensures equal distribution of haple (3) Division ensures equal distribution of genes (4) Division is required for segregation of replinumber of chromosomes is already reduced to he necessity of second meiotic division is for segre G ₀ -phase is	ed to divise f four oid che con cocated alf in gation	half in the first reductional division of ion? [J&K CET 2004] gametes romosomes chromosomes the first reductional division of meiosis, the
103.	 (3) Pachytene sis occurs in Zygotene phase of meiosis. When number of chromosomes is already reduce meiosis, what is the necessity of second meiotic (1) The division is required for the formation o (2) Division ensures equal distribution of haple (3) Division ensures equal distribution of genes (4) Division is required for segregation of replinumber of chromosomes is already reduced to have necessity of second meiotic division is for segre G₀-phase is (1) Phase after G₂-phase 	ed to divise four side character cated alf in gation	half in the first reductional division of ion? [J&K CET 2004] gametes romosomes chromosomes the first reductional division of meiosis, the n of replicated chromosomes. MU 2003]
103.	 (3) Pachytene sis occurs in Zygotene phase of meiosis. When number of chromosomes is already reduce meiosis, what is the necessity of second meiotic (1) The division is required for the formation o (2) Division ensures equal distribution of haple (3) Division ensures equal distribution of genes (4) Division is required for segregation of replinumber of chromosomes is already reduced to hanceessity of second meiotic division is for segre G₀-phase is (1) Phase after G₂-phase (2) Phase after M-phase, in which daughter cell 	ed to divise found for concept for concept for concept for for concept for	half in the first reductional division of ion? [J&K CET 2004] gametes romosomes chromosomes the first reductional division of meiosis, the of replicated chromosomes. MU 2003] rs new cell cycle
103.	(3) Pachytene sis occurs in Zygotene phase of meiosis. When number of chromosomes is already reduce meiosis, what is the necessity of second meiotic (1) The division is required for the formation o (2) Division ensures equal distribution of haple (3) Division ensures equal distribution of genes (4) Division is required for segregation of replinumber of chromosomes is already reduced to ha necessity of second meiotic division is for segre G ₀ -phase is (1) Phase after G ₂ -phase (2) Phase after M-phase, in which daughter cell (3) Arrest of cell cycle on the onset of different	ed to divise found for concept for concept for concept for for concept for	half in the first reductional division of ion? [J&K CET 2004] gametes romosomes chromosomes the first reductional division of meiosis, the of replicated chromosomes. MU 2003] rs new cell cycle
103. When 104.	 (3) Pachytene sis occurs in Zygotene phase of meiosis. When number of chromosomes is already reduce meiosis, what is the necessity of second meiotic (1) The division is required for the formation o (2) Division ensures equal distribution of haple (3) Division ensures equal distribution of genes (4) Division is required for segregation of replinumber of chromosomes is already reduced to hanceessity of second meiotic division is for segre G₀-phase is (1) Phase after G₂-phase (2) Phase after M-phase, in which daughter cell 	ed to divis four four characters for cated alf in gation [AN]	half in the first reductional division of ion? [J&K CET 2004] gametes romosomes chromosomes the first reductional division of meiosis, the n of replicated chromosomes. MU 2003] rs new cell cycle
103. When 104.	(3) Pachytene sis occurs in Zygotene phase of meiosis. When number of chromosomes is already reduce meiosis, what is the necessity of second meiotic (1) The division is required for the formation o (2) Division ensures equal distribution of haple (3) Division ensures equal distribution of genes (4) Division is required for segregation of replinumber of chromosomes is already reduced to hanceessity of second meiotic division is for segre Go-phase is (1) Phase after G2-phase (2) Phase after M-phase, in which daughter cell (3) Arrest of cell cycle on the onset of different (4) All of the above ase is Arrest of cell cycle on the onset of different are in the content of the co	ed to divise four sid ches on contedulf in gation [AM]	half in the first reductional division of ion? [J&K CET 2004] gametes romosomes chromosomes the first reductional division of meiosis, the n of replicated chromosomes. MU 2003] rs new cell cycle n.
103. When 104.	(3) Pachytene sis occurs in Zygotene phase of meiosis. When number of chromosomes is already reduce meiosis, what is the necessity of second meiotic (1) The division is required for the formation o (2) Division ensures equal distribution of haple (3) Division ensures equal distribution of genes (4) Division is required for segregation of replinumber of chromosomes is already reduced to have necessity of second meiotic division is for segre (2) Phase after G ₂ -phase (2) Phase after M-phase, in which daughter cell (3) Arrest of cell cycle on the onset of different (4) All of the above ase is Arrest of cell cycle on the onset of different At which stage of mitosis, chromatids separate a	ed to divis four four characters for cated alf in gation [AN l enter interior and particular for the cated alf in gation for the cated alientees are cated alientees and particular for the cated alientees are cated alientees ar	half in the first reductional division of ion? [J&K CET 2004] gametes romosomes chromosomes the first reductional division of meiosis, the n of replicated chromosomes. MU 2003] rs new cell cycle n. ass to different poles? [DUMET 2003]
103. When 104.	(3) Pachytene sis occurs in Zygotene phase of meiosis. When number of chromosomes is already reduce meiosis, what is the necessity of second meiotic (1) The division is required for the formation o (2) Division ensures equal distribution of haple (3) Division ensures equal distribution of genes (4) Division is required for segregation of replinumber of chromosomes is already reduced to have necessity of second meiotic division is for segre (1) Phase after G2-phase (2) Phase after M-phase, in which daughter cell (3) Arrest of cell cycle on the onset of different (4) All of the above ase is Arrest of cell cycle on the onset of different At which stage of mitosis, chromatids separate a (1) Prophase	ed to divise found of the son conted of the son content o	half in the first reductional division of ion? [J&K CET 2004] gametes romosomes chromosomes the first reductional division of meiosis, the of replicated chromosomes. MU 2003] rs new cell cycle n h. ass to different poles? [DUMET 2003] Metaphase
103. When 104. G ₀ -ph:	(3) Pachytene sis occurs in Zygotene phase of meiosis. When number of chromosomes is already reduce meiosis, what is the necessity of second meiotic (1) The division is required for the formation o (2) Division ensures equal distribution of haple (3) Division ensures equal distribution of genes (4) Division is required for segregation of replinumber of chromosomes is already reduced to have necessity of second meiotic division is for segre (2) Phase after G ₂ -phase (2) Phase after M-phase, in which daughter cell (3) Arrest of cell cycle on the onset of different (4) All of the above ase is Arrest of cell cycle on the onset of different At which stage of mitosis, chromatids separate a	ed to divise four sid ches on content of the conten	half in the first reductional division of ion? [J&K CET 2004] gametes romosomes chromosomes the first reductional division of meiosis, the n of replicated chromosomes. MU 2003] rs new cell cycle n h. ass to different poles? [DUMET 2003] Metaphase Telophase

PA	CE	Cell Cycle & Cell	l Divisi	on		Bot. XI			
106.	The two chromatids of a metaphase chromosome represent [KCET 2003]								
	(1) Replicated chromosomes to be separated at anaphase								
	(2) Homologous chromosomes of a diploid set								
		on-homologous chromosomes joined at the							
CD1		laternal and paternal chromosomes joined				. 1			
The tw		natids of a metaphase chromosome repres	sent re	epncat	ed chromosomes to be	e separated at			
	anapha	ise.							
107.	The pr	ocess of cytokinesis refers to the division	of	ГМН	T CET 20031				
107.	(1) N	•			mosomes				
	` ′	ytoplasm	` /		e of these				
The pr		f cytokinesis refers to the division of Cyto	` '						
•			•						
108.		s of different genes that are on the same cl			• • •	arated by a			
		menon known as	_	MU 20	-				
		eiotropy		Epist					
		ontinuous variation	` '		sing over				
Alleles		fferent genes that are on the same co	hrom	osome	may occasionally	separated by a			
	pnenoi	menon known as Crossing over.							
109.	Chiacr	na shows the sites of		гмн	T CET 2003]				
107.		oindle formation	(2)	_	-				
		rossing over	` '	-	of these				
Chiasn		ys the sites of Crossing over.	(-)	_ , , ,					
		C							
110.	Meiosi	is in AaBb will produce gametes		[Har	yana PMT 2003]				
	(1) A	<mark>B, aB, Ab, ab</mark>		AB,					
	(3) A	•		Aa, I	Bb				
Meiosi	s in Aa	Bb will produce gametes AB, aB, Ab, ab.							
111	ъ.		1	i	, OTH DMT	20021			
111.	_	g which stage of meiosis, do tetrads line up	_	_		2003]			
		ophase-I <mark>letaphase-I</mark>			phase-I bhase-I				
During	. ,	hase-I of meiosis, do tetrads line up at the		-	masc-1				
During	, wietap	hase 1 of melosis, do tetrads fine up at the	cqua	itor.					
112.	Pheno	menon of crossing over in diploid organis	ms is	respo	nsible for [J&K	CET 2003]			
		inkages between genes			mbination between ge				
	(3) Se	egregation between genes	(4)	Dom	inance of gene				
Phenor		of crossing over in diploid organisms is re	spon	sible f	or recombination betw	veen genes.			
446	G 1			F 4	3 6T 004 51				
113.	Select	the correct option:		<u>[AIP</u>	MT 2015]				
	(1)			(*)	II				
	(1)	Synapsis aligns homologous chromosom	ies	(i)	Anaphase-II				

		I			II
(1)	Synapsis aligns l	nomologous chromo	osomes	(i)	Anaphase-II
(2)	Synthesis of RN.	A and protein		(ii)	Zygotene
(3)	Action of enzym	e recombinase		(iii)	G2-phase
, ,	Centromeres do move towards of	not separate but chr posite poles	omatids	(iv)	Anaphase-I
				(v)	Pachytene

	(1)	(2)	(3)	(4)
(1)	(ii)	(iii)	(v)	(iv)
(2)	(i)	(ii)	(v)	(iv)

(3) (ii) (iii) (iv) (v) (iv) (4) (ii) (i) (ii)

The given match is correct.

- 114. A somatic cell that has just completed the S phase of its cell cycle, as compared to gamete of the same species, has [AIPMT 2015]
 - (1) Same number of chromosomes but twice the amount of DNA
 - (2) Twice the number of chromosomes and four times the amount of DNA
 - (3) Four times the number of chromosomes and twice the amount of DNA
 - (4) Twice the number of chromosomes and twice the amount of DNA

A somatic cell that has just completed the S phase of its cell cycle, as compared to gamete of the same species, has twice the number of chromosomes and four times the amount of DNA.

115. Arrange the following events of meiosis in correct sequence [RE AIPMT 2015]

- (1) Crossing over
- (3) Terminalisation of chiasmata
- (1) (2), (3), (4), (1)
 - (2) (2), (1), (4), (3)
- (4) Disappearance of nucleolus (3) (2), (1), (3), (4)
 - (4) (1), (2), (3), (4)

The correct meiotic sequence is (2), (1), (3), (4)

116. In meiosis crossing over is initiated at [NEET-I 2016]

- (1) Diplotene
- (2) Pachytene
- (3) Leptotene

(2) Synapsis

(4) Zygotene

In meiosis crossing over is initiated at Pachytene.

117. During cell growth, DNA synthesis takes place in [NEET-II 2016]

- (1) S phase
- (2) G1 phase
- (3) G, phase
- (4) M phase

DNA synthesis takes place in S phase.

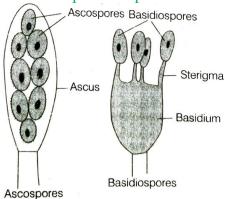
- Anaphase Promoting Complex (APC) is a protein degradation machinery necessary for proper 118. mitosis of animals cells. If APC is defective in a human cells, which of the following is expected [NEET 2017] to Occur?
 - (1) Chromosomes will not condense
 - (2) Chromosomes will be fragmented
 - (3) Chromosomes will not segregate
 - (4) Recombination of chromosome arms will occur

If anaphase promoting complex is defective in a human cell, the chromosomes will not segregate during anaphase of mitosis. APC triggers the transition from metaphase to anaphase by tagging specific proteins for degradation. Concept Enhancer Anaphase stage of mitosis is characterised by two events

- (a) Splitting of centromeres and segregation of chromosomes.
- (b) Movement of chromatids towards the opposite poles.
- 119. Which of the following options gives the correct sequences of events during mitosis?

[NEET 2017]

- (1) Condensation \rightarrow nuclear membrane disassembly \rightarrow crossing over \rightarrow segregation \rightarrow telophase
- (2) Condensation \rightarrow nuclear membrane disassembly \rightarrow arrangement at equator \rightarrow centromere $division \rightarrow segregation \rightarrow telophase$
- (3) Condensation \rightarrow crossing over \rightarrow nuclear membrane disassembly \rightarrow segregation \rightarrow telophase
- (4) Condensation \rightarrow arrangement at equator \rightarrow centromere division \rightarrow segregation \rightarrow telophase During mitosis following events occurs as follows Condensation of chromosomal material, which takes place at an early prophase stage. During late prophase nuclear membrane disintegrates Then chromosomes get arranged at equator in the metaphase stage. After that


splitting of centromere and segregation of chromosomes occur in the anaphase stage. In telophase stage chromosomes move to opposite poles of the cell. It is last stage of mitosis.

120. After karyogamy followed by meiosis, spores are produced exogenously in

- (2) Alternaria
- (3) Neurospora
- (4) Saccharomyces

Agaricus Meiospores are produced exogenously after karyogamy and meiosis. It belongs to Basidiomycetes. Alternaria belongs to the Deuteromycetes class of fungi. The fungi of this class lack sexual reproduction. Therefore, sexual spores are not formed. Neurospora and Saccharomyces belong to Ascomycetes class of fungi. They produce ascopores as meiospores.

Their ascospores are produced endogenously.

121. Cells in G₀ phase [NEET (National) 2019]

(1) enter the cell cycle

(2) suspend the cell cycle

(3) terminate the cell cycle

(4) exit the cell cycle

 G_0 phase is the stage in which the cells exit the cell cycle. It is the resting or quiescent phase in which the cells do not divide. It is the permanent state for some cells, e.g., neurons.

122. The correct sequence of phases of cell cycle is [NEET (National) 2019]

(1) $G_1 \rightarrow G_2 \rightarrow S \rightarrow M$

(2) $S \rightarrow G_1 \rightarrow G_2 \rightarrow M$

(3) $G_1 \rightarrow S \rightarrow G_2 \rightarrow M$

(4) $M \rightarrow G_1 \rightarrow G_2 \rightarrow S$

The correct sequence of phases of cell cycle is

$$G_1 \rightarrow S \rightarrow G_2 \rightarrow M$$

Here G_1 and G_2 represent first and second growth phase, respectively. S-phase represents synthesis phase during which DNA replicates. M-phase is mitotic phase during which cell begins to divide.

123. After meiosis-I, the resultant daughter cells have [NEET (Odisha) 2019]

- (1) same amount of DNA as in the parent cell in S-phase
- (2) twice the amount of DNA in Comparison to haploid gamete
- (3) same amount of DNA in Comparison to haploid gamete
- (4) four times the amount of DNA in Comparison to haploid gamete

After meiosis-I, the resultant daughter cells have twice the amount of DNA in comparison to haploid gamete. Meiosis-I causes segregation of homologous pairs of chromosomes. However, each chromosome is double-stranded, having two sister chromatids due to DNA replication before meiosis began.

124. Attachment of spindle fibres to kinetochores of chromosomes becomes evident in

[NEET (Oct.) 2020]

- (1) anaphase
- (2) telophase
- (3) prophase
- (4) metaphase

During the metaphase stage of cell cycle, spindle fibres originating from the centrosomes attaches to the kinetochore of chromosomes. Kinetochore is a disc-shaped structure at the surface of centromere through which the sister chromatids are held together. During

metaphase, the chromosomes arrange themselves at the equator on metaphasic plate. Due to this arrangement, the attachment of spindle fibres to kinetochore is clearly visible.

125. Identify the correct statement with regard to G₁-phase (Gap 1) of interphase.

[NEET (Sep.) 2020]

- (1) Reorganisation of all cell components, takes place
- (2) Cell is metabolically active, grows but does not replicate its DNA
- (3) Nuclear division takes place
- (4) DNA synthesis or replication takes place

The statement in option (2) is correct with regard to G_1 - phase of interphase because during G_1 phase the cell is metabolically active and continuously grows but does not replicate its DNA. DNA synthesis takes place in S-phase. Nuclear division occurs during karyokinesis. Reorganisation of all cell components takes place in M-phase.

- 126. Some dividing cells exist the cell cycle and enter vegetative inactive stage. This is called quiescent stage (G_0) . This process Occurs at the end of [NEET (Sep.) 2020] (1) G-phase (2) S-phase (3) G-phase (4) M-phase Some dividing cells exit the cell cycle and enter vegetative inactive stage, called quiescent $stage(G_0)$. This process occurs at the end of M-phase and beginning of G_1 -phase. Cells enter
 - G₀ for varying amounts of time, and Some cells enter the G₀-phase and stay there forever. This is because once they reach maturity, like nerve and heart cells they do not divide again, so they stay in the G_0 -phase.
- 127. In a mitotic cycle, the correct sequence of phases is [NEET (Oct.) 2020] (2) $G_1,S.G_2,M$ (1) S_1G_1,G_2,M (3) M, G_1 , G_2 , S (4) G_1, G_2, S, M In a mitotic cycle, the correct sequence of phases is G₁, S, G₂, M. The first three phases, i.e. G₁, S, G₂, occurring during interphase whereas the M-phase is the period of actual cell division. The major event occurring in each phase is tabulated below

3			
Phases	Activities		
G ₁ -phase	Cell becomes metabolically active, enzymes and proteins required for replication are synthesised.		
S-phase	Synthesis or replication of DNA occurs so that amount of DNA per cell gets doubled.		
G ₂ -phase	Proteins required for mitosis are synthesised while the growth of cell continues.		
M-phase	Cell divides to form daughter cells.		

128. Match the following (Columns) events that occur in their respective phases of cell cycle [NEET (Oct.) 2020] and select the correct option from the codes given below.

	Column I		Column II
A.	G ₁ -phase	1.	Cell grows and
	_		organelle duplication
B.	S phase	2.	DNA replication and
			chromosome
			duplication

C.		G ₂ -phase	•	•	3.	Cytoplasmic growth
D.		Metaphase in M-			4.	Alignment of
		phase				chromosomes
Cod	les					
	A	В	C		D	
(1)	2	3	4		1	
(2)	3	4	1		2	
(3)	4	1	2		3	
(4)	1	2	3		4	
(4)						

129. During meiosis 1, in which stage synapsis takes place? [NEET (Oct) 2020]

- (1) Pachytene
- (2) Zygotene
- (3) Diplotene
- (4) Leptotene

During zygotene stage of meiosis-l, chromosomes start pairing together and this process of association is called synapsis. Such paired chromosomes are called homologous chromosomes.

130. Dissolution of the synaptonemal complex occurs during [NEET (Sep.) 2020]

- (1) zygotene (2)
- (2) diplotene
- (3) leptotene
- (4) pachytene

Dissolution of the synaptonemal complex occurs during diplotene stage of prophase-l of meiosis-I. Prophase of meiosis-l is long and complex. It is comprised of leptotene, zygotene, pachytene, diplotene and diakinesis. During diplotene, at most places synaptonemal complex dissolves.

131. Match the following columns with respect to meiosis.

[NEET (Sep.) 2020]

	Column I		Column II
A.	Zygotene	1.	Terminalisation
B.	Pachytene	2.	Chiasmata
C.	Diplotene	3.	Crossing over
D.	Diakinesis	4.	Synapsis

Select the correct option

	Α	В	C	D
(1)	4	3	2	1
(2)	1	2	4	3
(3)	2	4	3	1
(4)	3	4	1	2

The correct option is (1). It can be explained as follows

During zygotene phase the homologous chromosomes pair or come together and forms synapsis. Crossing over takes place during pachytene stage and at each point of crossing over a chiasma is formed between non-sister chromatiads of homologous chromosomes. Chiasmata is the point of contact between the two non sister chromatids of homologous chromosomes, chiasmata becomes visible during diplotene stage. Terminalisation of chiasmata gets completed during diakinesis phase where chromosomes gets freely distributed in the cytoplasm.

132. The centriole undergoes duplication during [NEET 2021]

- (1) S-phasse
- (2) prophase
- (3) metaphase
- (4) G₂-phase

During S phase or synthesis phase of interphase replication of DNA and synthesis of histone protein, centromere and centrioles occur. During the S phase, DNA replication begins in the nucleus, and the centriole duplicates in the cytoplasm of the cell.

133. Match the List-I with List-II.

[NEET 2021]

	List – I		List – II
A.	S-Phase	1.	Proteins are
			synthesised
B.	G ₂ -phase	2.	Inactive phase
C.	Quiescent stage	3.	Interval between
			mitosis and initiation
			of DNA replication
D.	G ₁ -phase	4.	DNA replication

Choose the correct answer from the options given below.

	A	В	C	D	
(1)	3	2	1	4	
(2)	4	2	3	1	
(3)	4	1	2	3	
(4)	2	4	3	1	
(A)-	-(4), ((B)– $(1$	1), (C)–	(2), (D)	-(3)

During DNA replication, the unwinding of strands leaves a single strand

Vulnerable. In the eukaryotic cell cycle, chromosome duplication occurs during S phase' (the phase of DNA synthesis) and chromosome segregation occurs during 'M phase' (the mitosis phase). During the 6, phase, extra protein is often synthesised, and the organelles multiply until there are enough for two cells. Other cell materials such as lipids for the membrane may also be produced. The cell is in a quiescent (inactive) stage that occurs when cells exit the cell cycle. Some cells enter G temporarily until an external signal triggers the onset of G_0 . Other cells that never or rarely divide, such as mature cardiac muscle and nerve cells, remain in G_0 permanently. G_1 phase corresponds to the interval between mitosis and initiation of DNA replication. During G_1 phase the cell is metabolically active and continuously grows but does not replicate its DNA.

134. The fruit fly has 8 chromosomes (2n) in each cell. During interphase of mitosis, if the							
	chromosomes at G,-phase is 8, what would be the number of chromosomes after S-phase?						
				[NEET 2021]			
	(1) 8	(2) 6	(3) 4	(4) 32			
	protein centro	mere and centrioles occur,	but the number of chron	NA and synthesis of histone nosomes remains same from will remain 8 after the S phase			

Which stage of meiotic prophase shows terminalisation of chiasmata as its distinctive feature?

[NEET 2021]

(1) Leptotene (2) Zygotene (3) Diakinesis (4) Pachytene Diakinesis is the final'stage of meiotic prophase 1. In this stage the two homologous

chromosomes do not separate completely but remain attached together at one or more points as indicated by'X arrangement known as chiasmata. The displacement of chiasmata is termed as terminalisation of chiasmata which is completed in diakinesis phase.

136. Which of the following stages of meiosis involves division of centromere? [NEET 2021]

(1) Metaphase- (2) Metaphase-II (3) Anaphase-II (4) Telophase-II

During anaphase II, each pair of chromosomes is separated into two identical, independent chromosomes. The chromosomes are separated by a structure called the mitotic spindle made up of many long proteins called microtubules, which are attached to a chromosome at one end

and to the pole of a cell at the other end. The sister chromatids are separated simultaneously at their centromeres. In separated chromosomes are then pulled by the spindle to opposite poles of the cell. Thus, the centromere splits, freeing the sister chromatids from each other. Other options can be explained as: In metaphase I, the homologous pair of chromosomes align on either side of the equatorial plate. During metaphase II, the centromeres of the paired chromatids align along the equatorial plate in both cells. During telophase II, the two groups of chromosome once again get enclosed by nuclear envelope.

(1) Movement of centrioles towards opposite poles	division? [N	EET 2022]
(3) Coiling and condensation of the chromatids		
(4) Spindle fibres attach to kinetochores of chromosomes		
XI pairing of homologous chromosome occurs during meios	sis	
		EET 2022]
` ' 1	-	
Regarding Meiosis, which of the statements is incorrect?	[N]	EET 2022]
(1) DNA replication occurs in S phase of Meiosis – II		
(2) Pairing of homologous chromosomes and recombination	n occurs in Meios	is- I
•		
_		
XI NCERT Pg 167		
Among eukaryotes, replication of DNA takes place in	[N]	EET 2023]
	-	-
XI NCERT – PAGE NO. 163	()	
Which of the following stages of majoris involves division	of contromora?	[NEET 2023]
		Metaphase I
XI NCERT – PAGE NO. 169	(1)	Wetaphase 1
	_	e of prophase I in EET 2023]
	_	Zygotene
XI NCERT – PAGE NO. 168	· ,	
Match List I with List II:	[N]	EET 2023]
List I List I	[1 ()	2020]
A. M Phase I. Proteins are synthesized		
B. G ₂ Phase II. Inactive phase		
	tiation of DNA re	plication
1		
	B-I. C-II. D-III	
	(1) Movement of centrioles towards opposite poles (2) Pairing of homologous chromosomes (3) Coiling and condensation of the chromatids (4) Spindle fibres attach to kinetochores of chromosomes XI pairing of homologous chromosome occurs during meios The appearance of recombination nodules on homolog characterizes: (1) Bivalent (2) Sites (3) Terminalization (4) Synap XII Recombination nodules show the sites at which crossing Regarding Meiosis, which of the statements is incorrect? (1) DNA replication occurs in S phase of Meiosis – II (2) Pairing of homologous chromosomes and recombinatio (3) Four haploid cells are formed at the end of Meiosis – II (4) There are two stages in Meiosis, Meiosis- I and II XI NCERT Pg 167 Among eukaryotes, replication of DNA takes place in (1) S phase (2) G ₁ phase (3) G ₂ ph XI NCERT – PAGE NO. 163 Which of the following stages of meiosis involves division of (1) Metaphase II (2) Anaphase II (3) Telop XI NCERT – PAGE NO. 169 The process of appearance of recombination nodules occurs meiosis? (1) Pachytene (2) Diplotene (3) Diakit XI NCERT – PAGE NO. 168 Match List I with List II: List I A. M Phase I. Proteins are synthesized B. G ₂ Phase II. Inactive phase C. Quiescent stage III. Interval between mitosis and ini D. G ₁ Phase IV. Equational division Choose the correct answer from the options given below: (1) A-IV, B-II, C-I, D-III (2) A-IV,	(1) Movement of centrioles towards opposite poles (2) Pairing of homologous chromosomes (3) Coiling and condensation of the chromatids (4) Spindle fibres attach to kinetochores of chromosomes XI pairing of homologous chromosome occurs during meiosis The appearance of recombination nodules on homologous chromosome characterizes: (1) Bivalent (2) Sites at which crossing (3) Terminalization (4) Synaptonemal complex XII Recombination nodules show the sites at which crossing over occurred Regarding Meiosis, which of the statements is incorrect? [Ni (1) DNA replication occurs in S phase of Meiosis – II (2) Pairing of homologous chromosomes and recombination occurs in Meios (3) Four haploid cells are formed at the end of Meiosis – II (4) There are two stages in Meiosis, Meiosis- I and II XI NCERT Pg 167 Among eukaryotes, replication of DNA takes place in (1) S phase (2) G ₁ phase (3) G ₂ phase (4) XI NCERT – PAGE NO. 163 Which of the following stages of meiosis involves division of centromere? (1) Metaphase II (2) Anaphase II (3) Telophase (4) XI NCERT – PAGE NO. 169 The process of appearance of recombination nodules occurs at which sub stage meiosis? (1) Pachytene (2) Diplotene (3) Diakinesis (4) XI NCERT – PAGE NO. 168 Match List I with List II: List I A. M Phase I. Proteins are synthesized B. G ₂ Phase II. Inactive phase C. Quiescent stage III. Interval between mitosis and initiation of DNA re D. G ₁ Phase IV. Equational division Choose the correct answer from the options given below: (1) A-IV, B-II, C-I, D-III

XI NCERT – PAGE NO. 163, 164

144. Match List I with List II:

[NEET 2023]

LIST I(Interaction)	LIST II(Species A and B)
(A) Mutualism	(I) + (A), O(B)
(B) Commensalism	(II) - (A), O(B)
(C) Amensalism	(III) + (A)(B)
(D) Parasitism	(IV) + (A), + (B)

Choose the correct answer from the options given below:

(1)
$$A-IV, B-I, C-II, D-III$$

(2)
$$A-IV, B-III, C-I, D-II$$

(3)
$$A-III, B-I, C-IV, D-II$$

(4)
$$A-IV, B-II, C-I, D-III$$

XII NCERT – PAGE NO. 232

