<table>
<thead>
<tr>
<th>Answer Key</th>
<th>Medical AITS Test-01</th>
<th>Date: 10 Nov, 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (1)</td>
<td>46 (3)</td>
<td>91 (1)</td>
</tr>
<tr>
<td>2 (3)</td>
<td>47 (3)</td>
<td>92 (4)</td>
</tr>
<tr>
<td>3 (1)</td>
<td>48 (1)</td>
<td>93 (2)</td>
</tr>
<tr>
<td>4 (2)</td>
<td>49 (1)</td>
<td>94 (4)</td>
</tr>
<tr>
<td>5 (3)</td>
<td>50 (2)</td>
<td>95 (3)</td>
</tr>
<tr>
<td>6 (4)</td>
<td>51 (4)</td>
<td>96 (4)</td>
</tr>
<tr>
<td>7 (2)</td>
<td>52 (4)</td>
<td>97 (2)</td>
</tr>
<tr>
<td>8 (3)</td>
<td>53 (3)</td>
<td>98 (2)</td>
</tr>
<tr>
<td>9 (3)</td>
<td>54 (3)</td>
<td>99 (1)</td>
</tr>
<tr>
<td>10 (3)</td>
<td>55 (3)</td>
<td>100 (2)</td>
</tr>
<tr>
<td>11 (1)</td>
<td>56 (1)</td>
<td>101 (2)</td>
</tr>
<tr>
<td>12 (2)</td>
<td>57 (2)</td>
<td>102 (2)</td>
</tr>
<tr>
<td>13 (1)</td>
<td>58 (3)</td>
<td>103 (4)</td>
</tr>
<tr>
<td>14 (2)</td>
<td>59 (Bonus)</td>
<td>104 (1)</td>
</tr>
<tr>
<td>15 (3)</td>
<td>60 (4)</td>
<td>105 (4)</td>
</tr>
<tr>
<td>16 (2)</td>
<td>61 (3)</td>
<td>106 (4)</td>
</tr>
<tr>
<td>17 (2)</td>
<td>62 (3)</td>
<td>107 (2)</td>
</tr>
<tr>
<td>18 (3)</td>
<td>63 (1)</td>
<td>108 (1)</td>
</tr>
<tr>
<td>19 (2)</td>
<td>64 (1)</td>
<td>109 (1)</td>
</tr>
<tr>
<td>20 (2)</td>
<td>65 (4)</td>
<td>110 (3)</td>
</tr>
<tr>
<td>21 (4)</td>
<td>66 (3)</td>
<td>111 (4)</td>
</tr>
<tr>
<td>22 (4)</td>
<td>67 (1)</td>
<td>112 (4)</td>
</tr>
<tr>
<td>23 (1)</td>
<td>68 (3)</td>
<td>113 (1)</td>
</tr>
<tr>
<td>24 (2)</td>
<td>69 (4)</td>
<td>114 (4)</td>
</tr>
<tr>
<td>25 (1)</td>
<td>70 (1)</td>
<td>115 (3)</td>
</tr>
<tr>
<td>26 (1)</td>
<td>71 (1)</td>
<td>116 (1)</td>
</tr>
<tr>
<td>27 (2)</td>
<td>72 (2)</td>
<td>117 (2)</td>
</tr>
<tr>
<td>28 (2)</td>
<td>73 (3)</td>
<td>118 (3)</td>
</tr>
<tr>
<td>29 (3)</td>
<td>74 (2)</td>
<td>119 (4)</td>
</tr>
<tr>
<td>30 (4)</td>
<td>75 (4)</td>
<td>120 (1)</td>
</tr>
<tr>
<td>31 (2)</td>
<td>76 (3)</td>
<td>121 (2)</td>
</tr>
<tr>
<td>32 (3)</td>
<td>77 (1)</td>
<td>122 (3)</td>
</tr>
<tr>
<td>33 (3)</td>
<td>78 (2)</td>
<td>123 (3)</td>
</tr>
<tr>
<td>34 (4)</td>
<td>79 (3)</td>
<td>124 (3)</td>
</tr>
<tr>
<td>35 (3)</td>
<td>80 (3)</td>
<td>125 (2)</td>
</tr>
<tr>
<td>36 (1)</td>
<td>81 (1)</td>
<td>126 (2)</td>
</tr>
<tr>
<td>37 (2)</td>
<td>82 (4)</td>
<td>127 (1)</td>
</tr>
<tr>
<td>38 (3)</td>
<td>83 (1)</td>
<td>128 (2)</td>
</tr>
<tr>
<td>39 (1)</td>
<td>84 (3)</td>
<td>129 (2)</td>
</tr>
<tr>
<td>40 (4)</td>
<td>85 (1)</td>
<td>130 (2)</td>
</tr>
<tr>
<td>41 (2)</td>
<td>86 (1)</td>
<td>131 (3)</td>
</tr>
<tr>
<td>42 (1)</td>
<td>87 (3)</td>
<td>132 (3)</td>
</tr>
<tr>
<td>43 (3)</td>
<td>88 (3)</td>
<td>133 (3)</td>
</tr>
<tr>
<td>44 (2)</td>
<td>89 (4)</td>
<td>134 (2)</td>
</tr>
<tr>
<td>45 (4)</td>
<td>90 (Bonus)</td>
<td>135 (4)</td>
</tr>
</tbody>
</table>
SOLUTIONS

1.

\[ax = P, \quad a = \frac{P}{x} = \frac{ML^{-1}T^{-2}}{L} = ML^{-2}T^{-2} \]

\[c = t^2 = T^2; \quad \frac{b}{T^2} = P \]

or \[b = PT^2 = ML^{-1}T^{-2} \times T^2 = ML^{-1} \]

2.

(c) The given relation is \[S = A (1 - e^{-Bx}) \]

As \(B \cdot x \) is number (dimensionless)

\[\therefore \quad B = \frac{1}{xt} = \frac{1}{\text{ms}} = \text{m}^{-1}\text{s}^{-1} \]

3.

(a) one system

MKS system

\[L_1 = 10 \text{ cm} \quad L_2 = 1 \text{ m} = 100 \text{ cm} \]

\[M_1 = 10 \text{ g} \quad M_2 = 1 \text{ kg} = 1000 \text{ g} \]

\[T_1 = 0.1 \text{ s} \quad T_2 = 1 \text{ s} \]

\[n_1 = 1 \quad n_2 = ? \]

Force \([\text{MLT}^{-2}] \)

\[n_2 = n_1 \left(\frac{M_1}{M_2} \right)^a \left(\frac{L_1}{L_2} \right)^b \left(\frac{T_1}{T_2} \right)^c \]

\[= 1 \left(\frac{10 \text{ g}}{1000 \text{ g}} \right)^1 \left(\frac{10 \text{ cm}}{100 \text{ cm}} \right)^1 \left(\frac{0.1 \text{ s}}{1 \text{ s}} \right)^{-2} \]

\[= 1 \times \frac{1}{100} \times \frac{1}{10} \times 10 \times 10 = 0.1 \text{ N} \]

4.

(b) Here, \[P = \frac{a^2 b^2}{cd} \]

\[\frac{\Delta P}{P} = \frac{a^2 \Delta b + b^2 \Delta a}{a b} \]

\[\frac{\Delta P}{P} \times 100 = \pm (3 \times 1\% + 2 \times 2\% + 3\% + 4\%) = \pm 14\% \]
5.

(c): Let \(v = \kappa \lambda^a \rho^b g^c \)

\[[M^0 L T^{-1}] = L^a [ML^{-3})^b [LT^{-2}]^c = M^b L^{a-3b} t^{-2c} \]

Applying principle of homogeneity of dimensions, we get

\[b = 0, a - 3b + c = 1, -2c = -1, c = \frac{1}{2} \]

\[a = 1 + 3b - c = 1 + 0 - \frac{1}{2} = \frac{1}{2} \]

\[\therefore \quad v = k \lambda^{1/2} p^0 g^{1/2} ; \quad v^2 \approx \lambda g \]

6.

(d): Refer to Fig. 2.1(S), the body will go from \(P \) to \(Q \), where displacement \(= \overrightarrow{PQ} \) and angle subtended at \(O \), i.e., \(\angle PQO = \pi/3 \)

Here, \(\overrightarrow{OP} = R \)

\(\overrightarrow{OQ} = R, \theta = \pi/3 \)

\[\therefore \quad \overrightarrow{PQ} = \sqrt{(OP)^2 + (OQ)^2 - 2(OP)(OQ) \cos \pi/3} \]

\[= \sqrt{R^2 + R^2 - 2R \times R \times 1/2} = R \]

7.

(b): \(t = ax^2 + bx \)

Differentiating it w.r.t. \(t \), we have

\[1 = (2ax + b) \times \frac{dx}{dt} \]

or velocity, \(v = \frac{dx}{dt} = \frac{1}{2ax + b} = (2ax + b)^{-1} \)

Acceleration \(a = \frac{dv}{dt} = -(2ax + b)^{-2} \times 2a \frac{dx}{dt} \)

\[= -2a \frac{x}{(2ax + b)^2} \frac{dx}{dt} = -2a v^2 \times v = -2a v^3 \]

8.

(c): \(a = \frac{dv}{dt} = \frac{dv}{dx} \frac{dx}{dt} = v \frac{dv}{dx} = -\alpha x^2 \) (Given)

or \(v \ dv = -\alpha x^2 \ dx \)

Integrating it within the conditions of motion; i.e., as \(x \) changes from 0 to \(x \), \(v \) changes from \(u \) to 0, we get

\[\int_0^x v \ dv = \int \frac{-\alpha x^2}{2} \ dx \quad \text{or} \quad \left(\frac{v^2}{2} \right)_0^x = -\frac{\alpha x^3}{3} \]

or \(\frac{u^2}{2} = \frac{\alpha x^3}{3} \quad \text{or} \quad x = \left(\frac{3u^2}{2\alpha} \right)^{1/3} \)
9. (c): Using the relation, \(s = ut + \frac{1}{2} \alpha t^2 \), time to fall a distance \(s \),
when \(u = 0 \), \(a = g \) will be \(t = \sqrt{\frac{2s}{g}} \). Let \(t_1, t_2, t_3 \) ... be the
time taken to fall 1 m, 2 m, 3 m ... respectively. Then
\[
 t_1 = \sqrt{\frac{2 \times 1}{g}} ; \quad t_2 = \sqrt{\frac{2 \times 2}{g}} ; \quad t_3 = \sqrt{\frac{2 \times 3}{g}} .
\]
So the time taken to fall 1 m = \(t_1 - 0 = \sqrt{\frac{2}{g}} \) \((\sqrt{1} - 0) \)
time taken to fall 2nd metre = \((t_2 - t_1) = \sqrt{\frac{2}{g}} (\sqrt{2} - \sqrt{1}) \)
time taken to fall 3rd metre = \((t_3 - t_1) = \sqrt{\frac{2}{g}} (\sqrt{3} - \sqrt{2}) \)
\(\therefore \) ratio of successive 1 m distance
\[
\frac{1}{\sqrt{1}} : \frac{\sqrt{2} - \sqrt{1}}{\sqrt{3} - \sqrt{2}} : \ldots
\]

10. (c): If \(t \) is the total time of flight, then as per question
\[D_t = S_5 \quad \text{or} \quad \frac{10}{2} (2t - 1) = \frac{1}{2} \cdot 10 \times S^2 \quad \text{or} \quad t = 13 \text{ s} \]

11. (a): Case (i), \(u = 0 \), \(a = a \), \(t = n s \), \(v = v \)
\[v = u + at \quad \therefore \quad v = 0 + a \times n \quad \text{or} \quad a = v/n \]
When \(t = (n - 2) s \), \(S = ut + \frac{1}{2} \alpha t^2 = 0 + \frac{1}{2} \times \frac{v}{n} (n - 2)^2 \)
When \(t = n \), \(S' = 0 + \frac{1}{2} \frac{v}{n} n^2 \)
\(\therefore \) Distance travelled in last 2 seconds is
\[S' - S = \frac{1}{2} \frac{v}{n} n^2 - \frac{1}{2} \frac{v}{n} (n - 2)^2 = \frac{1}{2} \frac{v}{n} [n^2 - (n - 2)^2] \]
\[
= \frac{1}{2} \frac{v}{n} [n^2 - n^2 + 4n - 4] = \frac{2v}{n} (n - 1)
\]

12. (b): Let \(v \) be the velocity of the train after time \(t_1 \). Then,
\[v = \alpha t_1 = \beta t_2 ; \quad x_1 = \frac{1}{2} \alpha t_1^2 \quad \text{and} \quad x_2 = \frac{1}{2} \beta t_2^2 \]
\(\therefore \)
\[
\frac{\beta}{\alpha} = \frac{t_1}{t_2} \quad \text{and} \quad \frac{x_1}{x_2} = \frac{\alpha t_1^2}{\beta t_2^2} = \frac{\alpha}{\beta} \times \frac{t_1^2}{t_2^2} = \frac{\beta}{\alpha} \quad \therefore \quad \frac{x_1}{x_2} = \frac{\beta}{\alpha} = \frac{t_1}{t_2}
\]
13.

(a) : Taking vertical upward motion of particle from point of projection to highest point, we have:

\[u = u, \ a = -g, \ v = 0, \ t = t_1 \ (say) \]

As, \[v = u + at, \] so, \[0 = u - gt_1 \] \[\text{or} \quad t_1 = \frac{u}{g} \]

Taking vertical downward motion of particle from point of projection to the ground, we have

\[u = -u, \ a = g, \ S = H, \ t = nt_1 = \frac{nu}{g} \]

\[S = ut + \frac{1}{2} gt^2 \]

\[H = -u \left(\frac{nu}{g} \right) + \frac{1}{2} g \left(\frac{n^2 u^2}{g^2} \right) = -\frac{nu^2}{g} + \frac{n^2 u^2}{2g} = \frac{n u^2}{2g} [n - 2] \]

or \[2gH = n u^2 (n - 2) \]

14.

(b) : \[x = 4(t - 2) + a(t - 2)^2 \]

velocity, \[v = \frac{dx}{dt} = 4(1 - 0) + a \times 2(t - 2) \times 1 \]

Acceleration, \[a = \frac{dv}{dt} = 2a \]

When \(t = 0, \) \(v = 4 - 4a \) and the particle is not at origin.

15.

(c) : Speed = distance/time taken. Therefore,

\[\frac{v_1}{v_2} = \frac{S_0 / t_1}{S_0 / t_2} = \frac{t_2}{t_1} = \frac{4}{2} = \frac{2}{1} \]

16.

(b) : Using \(v^2 = u^2 + 2as, \) for second part of motion we have

\[(8)^2 = (6)^2 + 2 \times a \times 7 \quad \text{or} \quad 28 = 14a \quad \text{or} \quad a = 2 \text{ ms}^{-2} \]

For first part of motion,

\[(6)^2 = u^2 + 2 \times 2 \times 5 \quad \text{or} \quad u = 4 \text{ ms}^{-1} \]
17.

(b) : Relative speed of trains = 30 + 30 = 60 km h\(^{-1}\)

Time taken by the trains to meet = \(\frac{90}{60} = \frac{3}{2}\) h

Speed of bird = 50 km h\(^{-1}\)

Distance travelled by bird = \(50 \times \frac{3}{2} = 75\) km

18.

(c) : Let the student catches the bus after time \(t\). Then distance travelled by student in \(t\) second

\[= 50 + \text{distance travelled by bus in } t \text{ seconds}\]

or \(ut = 50 + \frac{1}{2} at^2 = 50 + \frac{1}{2} \times 1 \times t^2 \) or \(t^2 - 2 ut + 100 = 0\)

or \(t = \frac{2u \pm \sqrt{4u^2 - 400}}{2} = u \pm \sqrt{u^2 - 100}\)

\(u\) will be minimum if \(u^2 - 100 = 0\) or \(u = 10\) m/s

19.

(b) : First 50 metres fall is under the effect of gravity only. The velocity acquired, \(u = \sqrt{2gh} = \sqrt{2 \times 9.8 \times 50}\) m/s

= 10\(\sqrt{9.8}\) m/s. Taking onward motion of parachutist with retardation 2 m/s\(^2\), we have,

\(u = 10\sqrt{9.8}\) m/s, \(a = -2\) m/s\(^2\), \(v = 3\) m/s

\(s = \frac{v^2 - u^2}{2a} = \frac{(3)^2 - (2 \times 9.8 \times 50)}{2 \times (-2)} = 243\) m

\(\therefore\) Total height = 50 + 243 = 293 m

20.

(b) : Let \(v_w\) be the velocity of water and \(v_b\) be the velocity of motor boat in still water. If \(x\) is the distance covered, then as per question \(x = (v_b + v_w) \times 6 = (v_b - v_w) \times 10\)

On solving, \(v_w = v_b/4\)

\(\therefore\) \(x = [v_b + v_b/4] \times 6 = 7.5\ v_b\)

Time taken by motor boat to cross the same distance in still water is \(t = \frac{x}{v_b} = \frac{7.5\ v_b}{v_b} = 7.5\ h\)
21.

\[(d) : \mathbf{V}_{av} = \frac{(x_2 - x_1) \hat{i} + (y_2 - y_1) \hat{j}}{t_2 - t_1} = \frac{(13 - 2) \hat{i} + (14 - 3) \hat{j}}{5 - 0} = \frac{11 \hat{i} + 11 \hat{j}}{5} = \frac{11}{5} (\hat{i} + \hat{j}) \]

22.

\[(d) : \text{Let } \theta \text{ be the angle between } \mathbf{A}_1 \text{ and } \mathbf{A}_2. \text{ Then} \]

\[A_1^2 + A_2^2 + 2 A_1 A_2 \cos \theta = R^2 \text{ or } A^2 + A^2 + 2 AA \cos \theta = 3 A^2 \]

or \[\cos \theta = \frac{1}{2} = \cos 60^\circ \text{ or } \theta = 60^\circ \]

The angle between \(\mathbf{A}_1 \) and \(-\mathbf{A}_2 \) is \((180^\circ - 60^\circ) = 120^\circ \). \[
\therefore \text{Resultant of } \mathbf{A}_1 \text{ and } -\mathbf{A}_2 \text{ is} \]

\[R' = [A_1^2 + A_2^2 + 2 A_1 A_2 \cos (180^\circ - 60^\circ)]^{1/2} \]

\[= [A^2 + A^2 + 2 AA \cos 120^\circ]^{1/2} = A \]

23.

\[(a) : \text{Work done, } W = \mathbf{F} \cdot s = (6 \hat{i} + 2 \hat{j} - 3 \hat{k}) \cdot (2 \hat{i} - 3 \hat{j} - x \hat{k}) \]

\[0 = 12 - 6 + 3x \text{ or } 3x = -6 \text{ or } x = -2 \]

24.

\[(b) : \text{Here, } \mathbf{A} = (\hat{i} + 2 \hat{j} + 3 \hat{k}); \mathbf{B} = (3 \hat{i} - 2 \hat{j} + \hat{k}) \]

\[\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 3 & -2 & 1 \end{vmatrix} = \hat{i}(2 + 6) + \hat{j}(9 - 1) + \hat{k}(-2 - 6) \]

\[= 8 \hat{i} + 8 \hat{j} - 8 \hat{k} \]

\[|\mathbf{A} \times \mathbf{B}| = \sqrt{8^2 + 8^2 + (-8)^2} = 8\sqrt{3} \]

Area of parallelogram \(= |\mathbf{A} \times \mathbf{B}| = 8\sqrt{3} \)
25.
(a) : Here, \(\vec{A} = 2\hat{i} + 3\hat{j}, \quad \vec{B} = (\hat{i} + \hat{j}) \);

\[
\vec{B} = \frac{\vec{B}}{B} = \frac{(\hat{i} + \hat{j})}{\sqrt{1^2 + 1^2}} = \frac{\hat{i} + \hat{j}}{\sqrt{2}}
\]

Component of \(\vec{A} \) along \(\vec{B} \) is

\[
= (\vec{A} \cdot \vec{B}) \hat{B} = \left[(2\hat{i} + 3\hat{j}) \cdot \left(\frac{\hat{i} + \hat{j}}{\sqrt{2}}\right)\right] = \frac{5}{2} (\hat{i} + \hat{j})
\]

Magnitude of the component of \(\vec{A} \) along \(\vec{B} \) is

\[
= \frac{5}{2} \left[\sqrt{1^2 + 1^2}\right] = \frac{5}{2} \times \sqrt{2} = \frac{5}{\sqrt{2}}
\]

26.
(a) : Let \(d \) be the diameter of the circular disc. The time taken by a particles to reach from 0 to A, 0 to B and 0 to C be \(t_1 \), \(t_2 \) and \(t_3 \) respectively.

Time taken by particle to reach from 0 to B is

\[
t_2 = \sqrt{\frac{2d}{g}}
\]

For a particle sliding along any groove which makes an angle \(\theta \) with \(OB \), \(h = \frac{1}{2} at_1^2 \)

Here, \(h = d \cos \theta \) and \(a = g \cos \theta \)

\[
\therefore \quad d \cos \theta = \frac{1}{2} (g \cos \theta) t_1^2 \quad \text{or} \quad t_1 = \sqrt{\frac{2d}{g}} = t_3
\]

\[
\therefore \quad t_1 : t_2 : t_3 = 1 : 1 : 1
\]

27.
(b) : Let \(\vec{v} \) be perpendicular to \(\vec{u} \) after time \(t \) of the projection of projectile. So \(\vec{v} \cdot \vec{u} = 0 \)

But \(\vec{v} = \vec{u} + \vec{a} t \) \(\therefore (\vec{u} + \vec{a} t) \cdot \vec{u} = 0 \)

\[
\vec{u} \cdot \vec{u} + (\vec{a} \cdot \vec{u}) t = 0 \quad \text{or} \quad \vec{u}^2 + gat \cos (90^\circ + \theta) = 0
\]

\[
[\because a = g \text{ and angle between } \vec{u} \text{ and } \vec{g} \text{ is } (90^\circ + \theta)]
\]

or \(u - gt \sin \theta = 0 \) \(\text{or} \ \ t = \frac{u}{g \sin \theta} \)
28. \((b) \): \(y = bx^2 \)

\[
\frac{dy}{dt} = 2bx \frac{dx}{dt} \quad \text{or} \quad v_y = 2bxv_x
\]

\[
\frac{d (v_y)}{dt} = 2bx \frac{dv_x}{dt} + 2bv_x \frac{dx}{dt} = 0 + 2bv_x^2
\]

\[
\therefore \frac{dv_x}{dt} = 0, \quad \text{because the particle has constant acceleration along } y\text{-direction.}
\]

\[
\therefore \quad \frac{dv_y}{dt} = a = 2bv_x^2 \quad \text{or} \quad v_x = \sqrt{\frac{a}{2b}}
\]

29. \((c) \): Let \(H \) be the maximum height reached by body and \(\theta \) be the angle of its projection. As per question \(R = 2H \)

\[
\therefore \quad \frac{2u^2 \sin \theta \cos \theta}{g} = 2 \times \frac{u^2 \sin^2 \theta}{2g} \quad \text{or} \quad \tan \theta = 2
\]

Then \(\sin \theta = \frac{2}{\sqrt{5}} \) \quad and \quad \cos \theta = \frac{1}{\sqrt{5}}

Horizontal range, \(R = \frac{2u^2 \sin \theta \cos \theta}{g} \)

\[
= \frac{2u^2 \times (2/\sqrt{5}) \times (1/\sqrt{5})}{g} = \frac{4u^2}{5g}
\]

30. \((d) \): For the same horizontal range, angle of projection of projectile will be \(\theta \) and \((90^\circ - \theta) \). If one angle is \(\pi/3 \) (= 60°) then the other angle of projection is \((90^\circ - 60^\circ) = 30^\circ \).

Max. height, \(h_1 = \frac{u^2 \sin^2 60^\circ}{2g} = \frac{u^2 (\sqrt{3}/2)^2}{2g} = \frac{3u^2}{8g} \)

or \(\frac{u^2}{g} = \frac{8h_1}{3} \)

\[
h_2 = \frac{u^2 \sin^2 30^\circ}{2g} = \frac{u^2(1/2)^2}{2g} = \frac{u^2}{8g} \times \frac{1}{8} = \frac{8h_1}{3} \times \frac{1}{8} = \frac{h_1}{3}
\]
(b) : Here, \(\mathbf{u} = 3 \hat{i} + 4 \hat{j} \);
\[u = \sqrt{3^2 + 4^2} = 5 \text{ ms}^{-1} \]
\[\tan \theta = \frac{4}{3} ; \quad \sin \theta = \frac{4}{5} \quad \text{and} \quad \cos \theta = \frac{3}{5} \]

Horizontal range,
\[R = \frac{u^2 2 \sin \theta \cos \theta}{g} = \frac{5^2 \times 2 \times (4/5) \times (3/5)}{10} = 2.4 \text{ m} \]

32.

(c) : Let \(u_x, u_y \) be the horizontal and vertical components of initial velocity and \(\theta \) be the angle of projection. Here, \(v_x = 6 \text{ ms}^{-1}, \)
\[v_y = 2 \text{ ms}^{-1}, \quad y = 0.4 \text{ m}. \]
\[u_x = v_x = 6 \text{ ms}^{-1} \]
Taking vertical upward motion from starting point to a height 0.4 m, we have
\[v_y^2 = u_y^2 - 2g \cdot 0.4 \quad \text{or} \quad u_y^2 = v_y^2 + 2g \cdot 0.4 = 2^2 + 2 \times 10 \times 0.4 = 12 \]
\[u_y = \sqrt{12} = 2\sqrt{3} \]
\[\tan \theta = \frac{u_y}{u_x} = \frac{2\sqrt{3}}{6} = \frac{1}{\sqrt{3}} = \tan 30^\circ \quad \text{or} \quad \theta = 30^\circ \]

33.

(c) : Here, \[\frac{3h}{2} = \frac{u^2 \sin^2 \theta}{2g} \quad \text{or} \quad \sqrt[3]{\frac{3h}{g}} = \frac{u \sin \theta}{g} \]

Time of flight, \[T = \frac{2u \sin \theta}{g} = 2\sqrt[3]{\frac{3h}{g}} \]

34.

(d) : The particle will strike the point \(D \) if velocity of particle w.r.t. platform is along \(AD \) or component of its relative velocity along \(AB \) is zero. It will be so if \(v \cos \theta = u \)
or \(\cos \theta = u/v \quad \text{or} \quad \theta = \cos^{-1} (u/v) \)
35. (c): In projectile motion, the horizontal component velocity remains constant throughout the motion, so
\[u \cos \theta = v \cos \phi \quad \text{or} \quad v = u \cos \theta / \cos \phi = u \cos \theta \sec \phi \]

36. (a): Refer to Fig. 3(FPH).12

\[OB = \text{half horizontal range} = \frac{1}{2} \left[\frac{u^2 \sin 2\theta}{g} \right] \]

\[AB = \text{Max. height} = \frac{u^2 \sin^2 \theta}{2g} \]

\[\tan \phi = \frac{AB}{OB} = \frac{u^2 \sin^2 \theta / 2g}{u^2 \sin 2\theta / 2g} = \frac{\sin^2 \theta}{2 \sin \theta \cos \theta} = \frac{1}{2} \tan \theta \]

37. (b): Here, \(y = 12x - \frac{3}{4}x^2 \)

Comparing it with equation of path of projectile, we have
\[y = x \tan \theta - \frac{gx^2}{2u^2 \cos^2 \theta} \]

We have: \(\tan \theta = 12 \) and \(\frac{g}{2u^2 \cos^2 \theta} = \frac{3}{4} \)

\[\sin \theta = \frac{12}{\sqrt{12^2 + 1}} = \frac{12}{145} \quad \text{and} \quad \cos \theta = \frac{1}{\sqrt{145}} \]

\[\frac{g}{2u^2 \cos^2 \theta} = \frac{3}{4} \quad \text{or} \quad \frac{2u^2 \cos^2 \theta}{g} = \frac{4}{3} \]

or \(\frac{2u^2}{g} \times \frac{1}{145} = \frac{4}{3} \) or \(\frac{2u^2}{g} = \frac{4 \times 145}{3} \)

Horizontal range, \(R = \frac{2u^2 \sin \theta \cos \theta}{g} \)

\[= \left(\frac{4 \times 145}{3} \right) \times \frac{12}{\sqrt{145}} \times \frac{1}{\sqrt{145}} = 16\text{m} \]
38.

(c): Refer to Fig. 3(FPH).9, let the stone thrown horizontally from A reaches to location B; where

\[v = 2u \quad \ldots(i) \]

Here, \(v_x = u \)

and \(v_y = g \times 2 = 2g \)

\[v = \sqrt{v_x^2 + v_y^2} \]

\[= \sqrt{u^2 + 4g^2} \]

From (i),

\[u^2 + 4g^2 = (2u)^2 = 4u^2 \]

or \(3u^2 = 4g^2 \)

or \(u = 2g/\sqrt{3} \)

39.

(a): Here, \(x = (u \cos \theta) t = 6t \) or \(u \cos \theta = 6 \) \(\ldots(i) \)

\[y = u \sin \theta t - \frac{1}{2}gt^2 = 8t - 5t^2 \]

\[\therefore \quad u \sin \theta - \frac{1}{2}gt^2 = 8t - 5t^2 \]

\[\therefore \quad u \sin \theta = 8 \] \(\ldots(ii) \)

and \(\frac{g}{2} = 5 \) or \(g = 10 \text{ ms}^{-2} \)

Squaring and adding (i) and (ii), we get

\[u^2 \cos^2 \theta + u^2 \sin^2 \theta = 6^2 + 8^2 = 100 \]

or \(u^2 = 100 \) or \(u^2 = 10 \text{ ms}^{-1} \); From (i), \(\cos \theta = \frac{6}{10} \);

From (ii) \(\sin \theta = \frac{8}{10} \)

Horizontal range \(= \frac{2u^2 \sin \theta \cos \theta}{g} = \frac{2 \times 10^2 \times 8 \times \frac{6}{10}}{10 \times 10} = 96 \text{ m} \)
(d) : Refer to Fig. 3.9(H.11, let velocity of rain be,
\[\vec{v}_r = a \hat{i} + b \hat{j} \]

1st Case : Velocity of man,
\[\vec{v}_m = (2 \text{ km h}^{-1}) \hat{i} \]

Velocity of rain w.r.t. man
\[\vec{v}_{rm} = \vec{v}_r - \vec{v}_m = (a \hat{i} + b \hat{j}) - 2 \hat{i} = (a - 2) \hat{i} + b \hat{j} \]

Since rain appears to fall vertically downwards so
\[a - 2 = 0 \quad \text{or} \quad a = 2 \]

2nd Case : \(\vec{v}_m = (4 \text{ km h}^{-1}) \hat{i} \)
\[\vec{v}_{rm} = \vec{v}_r - 4 \hat{i} = (a \hat{i} + b \hat{j}) - 4 \hat{i} = (a - 4) \hat{i} + b \hat{j} \]

Since rain appears to fall at 30° to the vertical, so
\[\tan 30° = \frac{a - 4}{b} \quad \text{or} \quad \frac{1}{\sqrt{3}} = \frac{a - 4}{b} = \frac{2 - 4}{b} = \frac{-2}{b} \]

or \(b = -2\sqrt{3} \)

Hence, \(\vec{v}_r = 2 \hat{i} - 2\sqrt{3} \hat{j} \)

or \(v_r = \sqrt{2^2 + (2\sqrt{3})^2} = 4 \text{ km h}^{-1} \)

If \(\theta \) is the angle of \(\vec{v}_r \) with horizontal, then
\[\tan \theta = \frac{-2\sqrt{3}}{2} = -\sqrt{3} \quad \text{or} \quad \theta = 120° \]

Angle with vertical = 120° – 90° = 30°
41.

(b) Refer to Fig. 3.9(H,8),

\[\vec{v}_C = (\overrightarrow{OA}) = (20 \text{ ms}^{-1}) \hat{i} ; \quad \vec{v}_{TC} = \overrightarrow{OB} = (20\sqrt{3} \text{ ms}^{-1}) \]

As, \(\vec{v}_{TC} = \vec{v}_T + (-\vec{v}_C) \)

\[\therefore \overrightarrow{OB} = \vec{v}_T + \overrightarrow{OC} \quad \text{or} \quad \vec{v}_T = \overrightarrow{OB} + (-\overrightarrow{OC}) \]

\[\therefore \vec{v}_T = (20\sqrt{3}) \hat{j} + (20)(-\hat{i}) = 20\sqrt{3} \hat{j} - 20 \hat{i} \]

\[\therefore \vec{v}_T = (20\sqrt{3})^2 + (-20)^2 = 40 \text{ m/s} \]

42.

\[\frac{S_{\text{nth}}}{S_n} = \frac{u + a \left(n - \frac{1}{2} \right)}{un + \frac{1}{2}an^2} = \frac{a(2n-1)}{an^2} = \frac{2n-1}{n^2} = \frac{2}{n} - \frac{1}{n^2} \]

43.

\[t = \frac{d}{\sqrt{v_{B/R}^2 - v_R^2}} \]

\[\frac{1}{4} \text{ hr} = \frac{1 \text{ km}}{\sqrt{25 - v_R^2}} \]

\[25 - v_R^2 = 16 \]

\[v_R = 3 \text{ km/h} \]

44.

\[\left(\frac{\text{KE}_{\text{min}}}{\text{KE}_{\text{min}}^2} \right) = \frac{4}{1} \Rightarrow \frac{u_1^2 \cos^2 \theta_1}{u_2^2 \cos^2 \theta_2} = \frac{4}{1} \Rightarrow \frac{u_1 \cos \theta_1}{u_2 \cos \theta_2} = \frac{2}{1} \]

\[H_1 = \frac{4}{1} \Rightarrow \frac{u_1^2 \sin^2 \theta_1}{u_2^2 \sin^2 \theta_2} = \frac{4}{1} \Rightarrow \frac{u_1 \sin \theta_1}{u_2 \sin \theta_2} = \frac{2}{1} \]

\[R_1 = \left(u_1 \cos \theta_1 \right) \left(u_1 \sin \theta_1 \right) = 4 \]

\[R_2 = \left(u_2 \cos \theta_2 \right) \left(u_2 \sin \theta_2 \right) = \frac{1}{1} \]
45.
\[T = \frac{2u_x}{g} = \frac{2v_0 \cos \theta}{g} \]
\[S_x = u_x T + \frac{1}{2} a_x T^2 \]

\[0 = (v_0 \sin \theta)(T) - \frac{1}{2} (4 \text{ m/s}^2)(T^2) \]

\[2T = v_0 \sin \theta \]

\[2 \left(\frac{2v_0 \cos \theta}{g} \right) = v_0 \sin \theta \]

\[\tan \theta = 0.4 \]

46. (3) Conceptual

47. (3)

48. (1)

49. (1)

50. (2) Conceptual

51. (4) Conceptual

52. (4)

53. (3)

\[\gamma, \text{ ionic character } = 16 \left(x_A - x_B \right) + 3.5 \left(x_A - x_B \right)^2 \]

\[x_A = 3.0, \quad x_B = 2.1 \]

\[\gamma, \text{ I.C. } = 16 \times 0.9 + 3.5 \times 0.8 \]

\[= 17.24 \gamma \]
54. (3) due to H-bonding \(H_2O \rightarrow \text{H}_{2} \text{P} \).

\[H_2O > H_2Te > H_2Se > H_2S \]

55. (3) due to H-bonding \(H_2O \rightarrow \text{H}_{2} \text{P} \).

\[H_2O > H_2Te > H_2Se > H_2S \]

56. (1)

57. (2) concept - [Handwritten text]

58. (3) \(C_{10}H_{14}N_2 + \frac{1}{2}O_2 \rightarrow 10CO_2 + 7H_2O + N_2 \uparrow \)

\[1 \text{ mole} \quad 1 \text{ mole} \]

\[10 \text{ moles} \quad 1 \text{ mole} \quad \downarrow 44.9 \text{ gm} \]

59. (3) 22.4 L water = \(N_A \) moles

\[1 \text{ ml} \text{ water} = 20 \text{ drops} \text{ (given)} \]

\[1 \text{ drop} = \frac{N_A}{22400} \text{ moles} \]

\[= \frac{6.022 \times 10^{23}}{4.98 \times 10^3} \]

\[= 1.24 \times 10^{-18} \]

60. (4) 1.5 mole \(\frac{1}{2}O \) = 2.7 gm \(H_2O \) (least)
61. (3)
Let 3.2 gm of each \(\text{H}_2, \text{He} \) and \(\text{O}_2 \) are mixed.
\[\text{Mole fraction of } \text{O}_2 = \frac{\frac{32}{2}}{\frac{32}{2} + \frac{32}{4} + \frac{32}{8}} \]
\[\text{Partial Press. of } \text{O}_2 = \text{Mole fraction } \times \text{Total Press.} \]
\[= \frac{1}{6} \times 7.5 = 0.3 \text{ atom} \]

62. (3)
\[\text{C}_6 \text{H}_{14} + 19\text{O}_2 \rightarrow 6\text{CO}_2 + 7\text{H}_2\text{O} \]
\[\text{n-hexane} \quad 304\text{gm} \quad 264\text{gm} \quad 12\text{gm} \]
\[\text{Now} \quad 86\text{gm n-hexane} = 304\text{gm o}_2 \]
\[\text{i.e.} \quad 86\text{kg n-hexane} = 304\text{kg o}_2 \]
\[\therefore \quad 8.15\text{kg n-hexane} = x \]
\[\therefore \quad x = \frac{2.15 \times 304}{86} = 7.06\text{kg} \]

63. (1)
100gm chlorophyll contains 2.68gm Mg
\[\quad 2 \text{gm chlorophyll will give} = \frac{2.68\times2}{100} = 0.053\text{gm} \]
Atomic wt of Mg = 24.3
\[\text{No. of Mg atoms in } 0.053\text{gm Mg} = \frac{0.053 \times 6.022 \times 10^{23}}{24.3} = 1.33 \times 10^{21} \text{ atoms} \]

64. (1)

65. (4)

66. (3)

67. (1)
100 ml air = 0.025 ml \(\text{CO}_2 \)
i.e. 1ml air = 0.00025 ml \(\text{CO}_2 \)
\[\text{Molccull of } \text{CO}_2 = \frac{0.00025 \times \text{NA}}{22400} \]
\[= 6.7 \times 10^{15} \text{ molecules} \]

68. (3)

69. (4)
\[\frac{E_4}{E_6} = \frac{E_4}{4^2} = \frac{1}{4} \Rightarrow E_4 = E_6 = \frac{\sqrt{2}}{4} \text{ kJ/m}^4 \]
70. (1)
71. (1)
\[
\begin{align*}
\overline{V}_H &= R_H \left(\frac{L}{n_1} - \frac{L}{n_2} \right) \text{ for } H - a \text{ in } \\
\overline{V}_{Be^{3+}} &= R_H \times 16 \left(\frac{1}{2} - \frac{1}{2} \right) = 2 = 4 \text{ B}^2 \\
\overline{V}_{Be^{3+}} &= 16 \overline{V}_H = 16 \times 1.5 \times 10^{-10} = 2.4 \times 10^{-8}
\end{align*}
\]
72. (2)
\[\text{One speed of light } \quad v = \frac{1}{10} \left(3 \times 10^8 \right) = 3 \times 10^6 \text{ m/s} \]
then use \[p = mv = 9.1 \times 10^{-31} \times 3 \times 10^6\]
then \[\lambda = \frac{h}{p} = 2.4 \times 10^{-10} \text{ m}\]
73. (3)
74. (2)
75. (4)
76. (3)
Conceptual
77. (1)
\[\text{Stroke } s = \frac{1}{2} \text{ indicates for only } 1.0\]
78. (2)
Concept of Quantum no
79. (3)
80. (3)
AB_3E type contain 4 bond pair + 1 lone pair
\[\Rightarrow \text{See saw}\]
81. (1)
B . O = 3
82. (4)
VSEPR theory
83. (1)
84. (3)
O_2^-
85. (1)
Mut Concent
86. (1)
\[\text{CH}_4, \text{N}_2, \text{H}_2, \text{H}_2O\]
87. (3) Aristote divided organisms as plants, animals and human beings.
88. (3) Animalia are heterotrophic, multicellular, lacking a cell wall
89. (4) Informative
90. (2)

| 91. | 1 | Aristotle divided organisms as plants, animals and human beings. |
| 92. | 4 | Animalia are heterotrophic, multicellular, lacking a cell wall |
| 93. | 2 | Cocci-Spherical shaped bacteria
 Bacillli- Rod shaped bacteria
 Vibrio -comma shaped bacteria
 Spirillum-Spiral bacteria |
| 94. | 4 | During Favourable conditions- Binary fission
 During unfavourable conditions- Endospore formation |
| 95. | 3 | 1- caused by bacteria
 2-placed under kingdom Protista
 4- Diatoms are chief producers of ocean. |
| 96. | 4 | Mycoplasma is wall less |
| 97. | 2 | Astaxanthin is a orange red pigment present in eye spot of Euglena |
| 98. | 2 | Red sea is caused by Cyanobacteria- Trichodesmium erythrium
 Red tide is caused by Red dinoflagellates Gymnodinium and Gonyaulax |
| 99. | 1 | Fragmentation may occur in the hyphae of Agaricus fungi. Others are unicellular protists. |
| 100. | 2 | Claviceps is Ascomycetes |
| 101. | 2 | Basidiospore is haploid sexual spore, produced exogenously
 Ascospore-Haploid, endogenous
 Oospore- Diploid
 Zygospore-Diploid |
102.	2	Phycomycetes are lower fungi- so have coenocytic mycelium.
103	4	Ascomycetes-Sac fungi
104.	1	NCERT Diagrams
105.	4	Ustilago is smut fungi
 Agaricus-Mushroom
 Puccinia-Rust fungi |
106.	4	Virus has either DNA or RNA as genetic material. Never both together.
107.	2	M.W. Beijerinck called this infectious fluid as contagium vivum fluidum.
108.	1	Capsid is present outside genetic material in virusus.
109.	1	Herpes virus- ds DNA
110.	3	NCERT Diagram
111.	4	Binomial epithet has 2 latin names(italicized if printed) and authors name which are not italicized.
112.	4	External and internal structure, along with the structure of cell, development process and ecological information of organisms are essential and form the basis of modern taxonomic studies.
113.	1	Systema Naturae is a book written by Carolus Linnaeus, the 10th edition of which was the starting point of Binomial Nomenclature.
114.	4	Tautonym is a scientific name in which the same word is used for both genus and species.
115.	3	Wheat-Triticum
 Brinjal, Potato-Solanum
 Lion, Tiger-Panthera
 Dog- Canis |
<p>| 116. | 1 | Species is a group of organisms which are morphologically similar and can freely interbreed and produce fertile offsprings. |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>117.</td>
<td>2</td>
</tr>
<tr>
<td>118.</td>
<td>3</td>
</tr>
</tbody>
</table>
| Agaricus- Edible Fungus-Basidiomycetes
Phytophthora- Oomycetes
Mucor-Zygomycetes | |
| **119.** | 4 |
| They are all different classes which come under Phylum Chordata (eg Class Ambhibia, Class reptilia etc) | |
| **120.** | 1 |
| It is the common name for lion | |
| **121.** | |
| Potato- *Solanum tuberosum*,
Brinjal - *Solanum melongena* | |
| **122.** | 3 |
| Related Orders are kept in Class | |
| **123.** | |
| Dicots and Monocots are related Classes, kept under Division Angiospermae | |
| **124.** | 3 |
| Dinoflagellates have 2 flagella, one is placed in the longitudinal groove and one is placed in the transverse groove. | |
| **125.** | 2 |
| Sac fungi - Ascomycetes | |
| **126.** | 2 |
| Eukaryotes are assigned to Kingdom Protista, Fungi, Plantae and Animalia. | |
| **127.** | 1 |
| Mycorrhiza is symbiotic association of fungi with roots of higher plants like gymnosperms and angiosperms. | |
| **128.** | 2 |
| Archaea has some novel features unique to them like, presence of Pseudopeptidoglycan in cell wall, presence of branched chain lipids in membrane etc. | |
| **129.** | 2 |
| During budding, a bud developed on a yeast cell may form another bud itself, even before detaching from the parent cell. It gives an appearance of a multicellular structure, called pseudomycelium | |
| **130.** | 2 |
| Mycoplasma is resistant to Penicillin since they lack a cell wall | |
| **131.** | 3 |
| Paramoecium and Plasmodium belong to kingdom Protista, Penicillum belongs to Fungi
Lichen is a symbiosis of fungi and algae
Nostoc and Anabaena are examples of Monera (Cyanobacteria) | |
| **132.** | 3 |
| Trypanosoma, Giardia, Monocystis- Flagellated protozoans
Noctiluca-Diatom
(All belong to Protista) | |
| **133.** | 3 |
| Mucor is a lower fungi, does not show dikaryophase. | |
| **134.** | 2 |
| Rhizobium- Symbiotic bacteria
Yeast- production of alcohol
Myxomycetes (slime moulds) are saprophytic. Ring worm is caused by Fungi | |
| **135.** | 4 |
| Archeabacteria are extremophiles and prevail in extreme conditions, like deep sea, hot thermal vents etc. | |