Correct order for these Hetro atoms in order of their participation in resonance will be:

Qu - which is not aromatic

Aromatic compounds are:

Qu - Which of the following compound has most acidity?

Qu - Identify most acidic H present in the above compound

Qu - Compare relative stability of following R's.

Qu - Which one of the following is most stable?

Qu - Which carbocation is most stable?
Q. Rank the following alkenes on order of increasing Δmax:

1. \[\text{structure 1} \]
2. \[\text{structure 2} \]
3. \[\text{structure 3} \]

Q. Which one of the following alkenes would you expect to be the most stable?

a. \[\text{structure a} \]

Q. Which has more dipole moment?

\[\text{structure A} \quad \text{structure B} \]

Q. Which will react with NaHCO$_3$, NaOH, and NaNH$_2$?

\[\text{structure 1} \quad \text{structure 2} \quad \text{structure 3} \]

Q. Which is more stable?

\[\text{structure 1} \quad \text{structure 2} \]

\[\text{structure 1} \quad \text{structure 2} \]
Arrange the following in dec. order of Acid strength:

\[2 > 3 > 4 \]

Consider the following two amines:

\[\text{amine 1} \quad \text{amine 2} \]

Which is correct statement regarding the basic strength of these amines:

a. Both are equally basic.
b. 2nd is less basic than 1st.
c. 1st is more basic than 2nd.
d. Sterically hindered.

Which is strongest carbon acid among the following?

\[\text{a} \quad \text{b} \quad \text{c} \quad \text{d} \]

Most acidic Hydrogen:

\[\text{H}^+ \]

Correct sequence of bond energies of C-H bonds will be:

\[2 > 3 > 7 > 4 \]

Which is more basic:

a. \(\text{p-NH}_2\text{C}_6\text{H}_4\text{SO}_3\text{H} \)
b. \(\text{p-NH}_2\text{C}_6\text{H}_4\text{COOH} \)
c. \(\text{CH}_2\text{NH}_2\)
d. \(\text{CH}_3\text{COOH} \)

Which has maximum pKa?

a. \(\text{COOH} \quad \text{COOH} \quad \text{COOH} \quad \text{COOH} \)

Consider the following compounds:

\[\text{Et}_3\text{N} \quad \text{PH}_3\text{H} \quad \text{Me}_2\text{NH} \]

Correct order of basic strength:

\[4 > 2 > 3 > 1 \]