1. (3) Path difference at point $P = \frac{xd}{D}$

Phase difference at point $P = \frac{2\pi xd}{\lambda} = \frac{2\pi x}{\beta}$

$I_0 = 4I_1$, intensity at point P

$I = I_1 + I_1 + 2I_1 \cos \frac{2\pi x}{\beta} = 2I_1 \left[1 + \cos \frac{2\pi x}{\beta} \right]$

$= I_0 \cos \frac{2\pi x}{\beta}$

2. (1) Light ray is going from liquid (Denser) to air (Rarer) and angle of refraction is 90°, so angle of incidence must be equal to critical angle from figure

$$\sin C = \frac{4}{5}$$

Also $rac{1}{\sin C} = \frac{5}{4} = 1.2$

3. (4) Equivalent circuit can be redrawn as follows

4. (2) $V = V_{CE} + I_C R_C$

$\Rightarrow 15 = 7 + I_C \times 2 \times 10^3 \Rightarrow I_C = 4 \text{ mA}$

$\therefore \frac{I_C}{I_B} \Rightarrow I_B = \frac{4}{100} = 0.04 \text{ mA}$

5. (2) By using $R = R_0 A^{1/3}$

$\Rightarrow \frac{R_1}{R_2} = \left(\frac{A_1}{A_2} \right)^{1/3}$

$\Rightarrow \frac{R}{R_{He}} = \left(\frac{A}{4} \right)^{1/3} \Rightarrow (14)^{1/3} = \left(\frac{A}{4} \right)^{1/3}$

$\Rightarrow A = 56$ so $Z = 56 - 30 = 26$.

6. (3) By using $E = -\frac{13.6}{n^2} \text{ eV}$ (for H_2 atom)

$\Rightarrow -0.544 = -\frac{13.6}{n^2} \Rightarrow n^2 = 25 \Rightarrow n = 5$
Angular momentum = \(n \frac{h}{2\pi} = \frac{5h}{2\pi} \).

7. (2) \(\lambda_{a} \propto \frac{1}{(Z-1)^2} \Rightarrow \lambda_{\text{Ni}} = \left(\frac{Z_{\text{Co}} - 1}{Z_{\text{Ni}} - 1} \right)^2 = \left(\frac{27 - 1}{28 - 1} \right)^2 \)
 \[\Rightarrow \lambda_{\text{Ni}} = \left(\frac{26}{27} \right)^2 \times \lambda_{\text{Co}} = \left(\frac{26}{27} \right)^2 \times 179 = 165.9 \text{ pm} < 179 \text{ pm}. \]

8. (2) For the incident electron \(\frac{1}{2} mv^2 = eV \) or \(p^2 = 2meV \)
 \[\therefore \text{de-Broglie wavelength } \lambda = \frac{h}{p} = \frac{h}{\sqrt{2meV}} \]
 Shortest X-ray wavelength \(\lambda_2 = \frac{hc}{eV} \)
 \[\therefore \frac{\lambda_1}{\lambda_2} = \frac{1}{c} \sqrt{\left(\frac{V}{2} \right) \left(\frac{e}{m} \right)} = \sqrt{\frac{10^4 \times 1.8 \times 10^11}{2 \times 3 \times 10^8}} = 0.1 \]

9. (2) \(\therefore E = W_0 + \frac{1}{2}mv^2_{\text{max}} \Rightarrow v_{\text{max}} = \sqrt{\frac{2(hf - W_0)}{m}} \)
 If frequency becomes 4f then
 \[V' = \sqrt{\frac{2(h \times 4f - W_0)}{m}} = 2\sqrt{\frac{2(hf - W_0)}{4m}} \Rightarrow V' > 2V \]

10. (2) When \(C \) is removed circuit becomes RL circuit hence \(\tan \frac{\pi}{3} = \frac{X_L}{R} \)(i)
 When \(L \) is removed circuit becomes RC circuit hence \(\tan \frac{\pi}{3} = \frac{X_C}{R} \)(ii)
 From equation (i) and (ii) we obtain \(X_L = X_C \). This is the condition of resonance and in resonance \(Z = R = 100\Omega \).

11. (1) \(dQ = \frac{d\varphi}{R} = \frac{nA dB}{R} = \frac{100 \times 1 \times 10^{-3} \times 2}{10} = 2 \times 10^{-2} \text{ C} \)

12. (2) At \(t = 0 \) current through \(L \) is zero so it acts as open circuit. The given figures can be redrawn as follow:

\[i_1 = 0 \quad i_2 = \frac{E}{R} \quad i_3 = \frac{E}{2R} \]

Hence \(i_2 > i_3 > i_1 \).
13. (4) From figure
\[\theta = \frac{x}{r} \]
\[\Rightarrow x = r \sin \frac{\theta}{2} \]
Hence new magnetic moment \(M' = m(2x) = m.2r \sin \frac{\theta}{2} \)
\[= m.\frac{2l \sin \theta}{2} = \frac{2ml \sin \theta / 2}{\theta} = \frac{2M \sin (\pi / 6)}{\pi / 3} = \frac{3M}{\pi} \]

14. (2) The given wire can be replaced by a straight wire as shown below

Hence force experienced by the wire
\[F = BIL = 5 \times 10 \times 0.1 = 5N \]

15. (3) When the particle moves along a circle in the magnetic field \(B \), the magnetic force is radially inward. If an electric field of proper magnitude is switched on which is directed radially outwards, the particle may experience no force. It will then move along a straight line with uniform velocity. This will be the case when
\[qE = \varepsilon \nu B \Rightarrow E = \nu B \]
also \(r = \frac{mv}{qB} \Rightarrow v = \frac{qBr}{m} \)
So \(E = \frac{qB^2r}{m} \)
\[= \frac{(10 \times 10^{-6}) \times (0.1)^2 \times 10 \times 10^{-2}}{1 \times 10^{-3} \times 10^{-6}} = 10 \text{ V/m} \]

16. (2) Switch \(S_2 \) is open so capacitor is not in circuit.

Current through \(3 \Omega \) resistor \(= \frac{24}{3+3} = 4 \text{ A} \)
Let potential of point ‘O’ shown in fig. is \(V_0 \)
then using ohm’s law
\[V_0 - V_a = 3 \times 4 = 12 \text{ V} \] \(...(i)\)
Now current through \(5 \Omega \) resistor \(= \frac{24}{5+1} = 4 \text{ A} \)
So \(V_0 - V_b = 4 \times 1 = 4 \text{ V} \) \(...(ii)\)
From equation (i) and (ii) \(V_b - V_a = 12 - 4 = 8 \text{ V} \).
17. (1) $J = nq\nu = n(ze)\nu = \frac{2 \times 10^8 \times 2 \times 1.6 \times 10^{-19} \times 10^5}{(10^{-3})^3} = 6.4 \text{A/m}^2$

18. (1) Suppose m rows are connected in parallel and each row contains n identical cells (each cell having $E = 15 \text{V}$ and $r = 2\Omega$)

For maximum current in the external resistance R, the necessary condition is $R = \frac{nr}{m}$

$\Rightarrow 12 = \frac{n \times 2}{m} \Rightarrow n = 6m$ (i)

Total cells = $24 = n \times m$ (ii)

On solving equations (i) and (ii) $n = 12$ and $m = 2$

i.e. 2 rows of 12 cells are connected in parallel.

19. (3) Given circuit can be redrawn as follows capacitors, $9\mu F$, $9\mu F$ and $7\mu F$ are short circuited. So they are deleted.

$V_1 + V_2 = 40 \text{V}$

and $\frac{V_1}{V_2} = \frac{36}{18} = 2$

Hence $V_1 = \frac{80}{3} \text{V}$

and $V_2 = \frac{40}{3} \text{V}$

Charge on $8\mu F$ capacitor = $8 \times \frac{80}{3} = 213.3 \mu F \approx 214 \mu F$

20. (2) Given system is a spherical capacitor

So capacitance of system $C = K \times 4\pi \varepsilon_0 \left[\frac{r_1 r_2}{r_2 - r_1} \right]$

$= \frac{6}{9 \times 10^9} \left[\frac{9 \times 10}{1} \right] \times 10^{-2} = 6 \times 10^{-10} \text{Farad}$

Now potential of inner sphere will be equal to potential difference of the capacitor. So

$V = \frac{q}{C} = \frac{18 \times 10^{-9}}{6 \times 10^{-10}} = 30 \text{V}$

21. (3) Length of the arc $= r\theta = \frac{r\pi}{3}$

Charge on the arc $= \frac{r\pi}{3} \times \lambda$

$:.$ Potential at center $= \frac{kq}{r}$

$= \frac{1}{4\pi \varepsilon_0} \times \frac{r\pi}{3} \frac{\lambda}{r} = \frac{\lambda}{12\varepsilon_0}$

22. (3) In open organ pipe 5^{th} overtone corresponds to 4^{th} harmonic mode.
Also in open pipe, Number of nodes = Order of mode of vibration and number of antinodes = (Number of nodes + 1). Here number of nodes = 4, Number of antinodes = 4 + 1 = 5.

23. (3) Next resonance length after the fundamental is $3l_1 = 3 \times 16 = 48 \text{ cm}$.

24. (1) Frequency detected by Indian submarine
$$n' = n \left[\frac{v + v_{sub}}{v - v_{sub}} \right] = 1000 \left[\frac{5500 + 50}{5500 - 50} \right] = 1.02 \text{ kHz}.$$

25. (1) $n_A = ?, n_B = \text{Known frequency} = 320 \text{ Hz}$

$x = 4 \text{ bps},$ which remains same after filing.

Unknown fork A is filed so $n_A \uparrow$

Hence $n_A \uparrow - n_B = x \quad \text{Wrong}$

$n_B - n_A \uparrow = x \quad \text{Correct}$

$\Rightarrow \quad n_A = n_B - x = 320 - 4 = 316 \text{ Hz}.$

This is the frequency before filing.

But in question frequency after filing is asked which must be greater than 316 Hz, such that it produces 4 beats per sec. Hence it is 324 Hz.

26. (4)

27. (2)

28. (2) Suppose conductivity of layer B is K, then it is $2K$ for layer A. Also conductivity of combination layers A and B is $K_S = \frac{2 \times 2K \times K}{(2K + K)} = \frac{4K}{3}$.
Hence $\left(\frac{Q}{t}\right)_{\text{Combination}} = \left(\frac{Q}{t}\right)_{A}$

$$\Rightarrow \frac{4 \text{ K.A} \times 60}{3} = \frac{2 \text{ K.A} \times (\Delta \theta)_A}{x} \Rightarrow (\Delta \theta)_A = 20 \text{ K}$$

29.
(2) $V-T$ graph is a straight line passing through origin. Hence, $V \propto T$ or $P = \text{constant}$

$\therefore \Delta Q = nC_p \Delta T$ and $\Delta U = nC_v \Delta T$

Also $\Delta W = \Delta Q - \Delta U = \mu (C_p - C_v) \Delta T$

$$\therefore \frac{\Delta Q}{\Delta W} = \frac{nC_p \Delta T}{n(C_p - C_v) \Delta T} = \frac{C_p}{C_p - C_v} = \frac{1}{1 - \frac{C_v}{C_p}}$$

$\frac{C_v}{C_p} = \frac{3}{5}$ for helium gas. Hence $\frac{\Delta Q}{\Delta W} = \frac{1}{1 - 3/5} = \frac{5}{2}$

30.
(1) $v_{\text{rms}} = \sqrt{\frac{3RT}{M}} \Rightarrow v_2 = \sqrt{\frac{T_2}{T_1}} = \sqrt{\frac{(273 + 90)}{(273 + 30)}} = 1.1$

$\% \text{ increase} = \left(\frac{v_2}{v_1} - 1\right) \times 100 = 0.1 \times 100 = 10\%$

31.
(1) $\theta_{\text{mix}} = \frac{\theta_1 - \frac{L_i}{C_w}}{2} \times 100 = \frac{80}{2} = 10^\circ \text{C}$

32.
(1) Velocity of liquid through orifice, $v = \sqrt{2gy}$

and time taken by liquid to reach the ground

$$t = \sqrt{\frac{2(h + h - y)}{g}} = \sqrt{\frac{2(2h - y)}{g}}$$

\therefore Horizontal distance covered by liquid

$$x = v.t. = \sqrt{2gy} \times \sqrt{\frac{2(2h - y)}{g}} = 4y(2h - y)$$

$$\Rightarrow x^2 = 4y(2h - y)$$

$$\Rightarrow \frac{d(x^2)}{dy} = 8h - 8y$$

for x to be maximum, $\frac{d}{dy}(x^2) = 0$

$$\therefore 8h - 8y = 0 \text{ or } h = y$$

So $x_m = \sqrt{4h(2h - h)} = 2h$

33.
(1) $\Delta P = \frac{2T}{r} = \frac{2 \times 72 \times 10^{-3}}{0.01 \times 10^{-2}} = 1440 \text{ N/m}^2$

$$= 1.44 \times 10^5 \text{ dyne/cm}^2$$

34.
(1) Breaking stress depends on the material of wire.
35. \(g = \frac{GM}{R^2} \Rightarrow g \propto \frac{M}{R^2} \)

According to problem \(M_p = \frac{M_e}{2} \) and \(R_p = \frac{R_e}{2} \)

\[g_p = \left(\frac{M_p}{M_e} \right) \left(\frac{R_e}{R_p} \right)^2 = \left(\frac{1}{2} \right)^2 = 2 \]

\[\Rightarrow g_p = 2g_e = 2 \times 9.8 = 19.6 \text{ m/s}^2 \]

36. \(C = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \Rightarrow \frac{1}{\mu_0 \varepsilon_0} = c^2 = [L^2 T^{-2}] \)

37. (3) Equation of trajectory for oblique projectile motion

\[y = x \tan \theta - \frac{g x^2}{2u^2 \cos^2 \theta} \]

Substituting \(x = D \) and \(u = v_0 \)

\[h = D \tan \theta - \frac{g D^2}{2u_0^2 \cos^2 \theta}. \]

38. (1) \[T = \frac{2m_1 m_2}{(m_1 + m_2)} (g + a) = \frac{2m_1 m_2 (g + g)}{m_1 + m_2} \]

\[\Rightarrow T = \frac{4m_1 m_2}{m_1 + m_2} g = \frac{4w_1 w_2}{w_1 + w_2} \]

39. (1) For the limiting condition upward friction force between board and block will balance the weight of the block.

i.e. \(F > mg \)

\[\Rightarrow \mu (R) > mg \]

\[\Rightarrow \mu (ma) > mg \]

\[\Rightarrow \mu > \frac{g}{a} \]

40. (4)

Initial kinetic energy of bullet = \(\frac{1}{2}mv^2 \)

After inelastic collision system moves with velocity \(V \)

By the conservation of momentum

\[mv + 0 = (m + M)V \quad \Rightarrow \quad V = \frac{mv}{m + M} \]

Kinetic energy of system = \(\frac{1}{2} (m + M) V^2 \)
\[
= \frac{1}{2} (m + M) \left(\frac{mv}{m + M} \right)^2
\]

Loss of kinetic energy = \(\frac{1}{2} mv^2 - \frac{1}{2} (m + M) \left(\frac{mv}{m + M} \right)^2 \)

\[
= \frac{1}{2} mv^2 \left(\frac{M}{m + M} \right)
\]

41. (2) \(P = \sqrt{2mE} \quad \therefore P \propto \sqrt{E} \)

In given problem K.E. becomes 64% of the original value.

\[
P_2 = \sqrt{\frac{E_2}{E_1}} = \sqrt{\frac{64E}{100E}} = 0.8 \quad \Rightarrow P_2 = 0.8P
\]

\(\therefore P_2 = 80\% \) of the original value.

i.e. decrease in momentum is 20%.

42. (3) Difference in K.E. = Difference in P.E. = 2mgr

43. (1) The forces that act on the block are \(qE \) and \(mg \). Since \(qE \) and \(mg \) are constant forces, the only variable elastic force changes by \(kx \). Where \(x \) is the elongation in the spring \(\Rightarrow \) unbalanced (restoring) force \(= F = -kx \)

\(\Rightarrow -m\omega^2x = -kx \Rightarrow \omega = \sqrt{\frac{k}{M}} = T. \)

44. (2)

45. (4) \(a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = v \cdot \frac{dv}{dx} = -\alpha x^2 \) (given)

\(\Rightarrow \int \limits_{v_0}^{v} v dv = -\alpha \int \limits_{0}^{x} x^2 dx \Rightarrow \left[\frac{v^2}{2} \right]_{v_0}^{v} = -\alpha \left[\frac{x^3}{3} \right]_{0}^{x}
\)

\(\Rightarrow \frac{v_0^2}{2} = \frac{\alpha S^3}{3} \Rightarrow S = \left(\frac{3v_0^2}{2\alpha} \right)^{\frac{1}{3}} \)

46. Let V mL of 0.1 M HCOONa be mixed to 50 mL of 0.05 M HCOOH.

\(\therefore \) In mixture [HCOONa] = \(\frac{0.1 \times V}{(V + 50)} \)
\[
[HCOOH] = \frac{50 \times 0.05}{V + 50}
\]
\[\therefore \quad \text{pH} = -\log K_a + \log \frac{[\text{Salt}]}{[\text{Acid}]}\]
\[\therefore \quad 4.0 = 3.7 + \log \frac{(0.1 \times V)}{(V + 50)} \times \frac{2.5}{(V + 50)}\]
\[\therefore \quad V = 50 \text{ mL}\]

47. \[P = \rho gh\]
\[= 1.03 \times 10^3 \times 9.8 \times 20\]
\[= 201880 \text{ pascal}\]
\[\approx 2 \text{ atm}\]

48. \[\text{C}_x\text{H}_y + \left(\frac{x + \frac{y}{4}}{4}\right)\text{O}_2 \rightarrow x\text{CO}_2 + \frac{y}{2}\text{H}_2\text{O}\]

at same T & P V \propto n so \[\frac{n_{\text{CO}_2}}{n_{\text{C}_x\text{H}_y}} = \frac{V_{\text{CO}_2}}{V_{\text{C}_x\text{H}_y}} = 4 \Rightarrow x = 4\]
\[\frac{n_{\text{CO}_2}}{n_{\text{C}_x\text{H}_y}} = \frac{V_{\text{O}_2}}{V_{\text{C}_x\text{H}_y}} = \frac{55}{10} \Rightarrow \left(\frac{y}{4} + x\right) = 5.5\]
\[y = 6\]

49. Since, –Br and –NO\textsubscript{2} are at meta positions and CH\textsubscript{3} is a o/p directing group, so it is first oxidized with K\textsubscript{2}Cr\textsubscript{2}O\textsubscript{7} / H\textsubscript{2}SO\textsubscript{4}, \Delta to carboxylic acid, which is meta directing.

The second step is nitration, not bromination because –NO\textsubscript{2} is also a meta directing group but Br is an o/p directing group.

50. Due to resonance, the C–Cl bond acquires some double bond character, so does not cleave by the 1OH at temperature 50–60ºC. For occurrence of the reaction, the required temperature is at least 600ºC with concn KOH/NaOH.

51. \[\Delta\text{H}^\circ = 2 \times \Delta\text{H}^\circ + 2 \times \Delta\text{H}^\circ - \Delta\text{H}^\circ\]

52. \[\begin{array}{c}
\text{CHO}
\end{array}\]

53. Secondary amine (R\textsubscript{2}NH)

54. Al\textsubscript{2}O\textsubscript{3} is amphoteric oxide

55. \[\begin{array}{c}
\end{array}\]

56. \[\begin{array}{c}
\end{array}\]
57. Octahedral complex

58. Silicones

59. \[\Delta t = \frac{4}{9} \Delta_0 \]
\[= \frac{4}{9} \times 18000 = 8000 \]

60. \[\lambda^o_{\text{CH}_2\text{COOH}} = \lambda^o_{\text{CH}_2\text{COOK}} + \frac{\left(\lambda^o_{\text{H}_2\text{SO}_4} - \lambda^o_{\text{K}_2\text{SO}_4} \right)}{2} \]
\[= z + \left(\frac{x - y}{2} \right) \]

61. \[\ln 2 = t_{1/2} \]
\[t_{1/2} = \frac{2.303 \times 0.3010}{2.303 \times 10^{-3} \text{ sec}^{-1}} \]
\[2t_{1/2} = 0.3010 \times 2 \times 10^3 \]
\[= 602 \text{ sec} \]

62. (4)

63. (2)

64. (3)

65. One molecule of H₂O is H–bonded with Ligand.

66. Electroneutrality principle
\[2x + 3(98 - x) = 200 \]
\[x = 294 - 200 = 94 \]
In 0.98, 0.94 Ni²⁺ is present
Fraction of \[\text{Ni}^{2+} \]
\[\frac{0.94}{0.98} \times 1 = 0.96 \]

67. \(\ell = 3(f), \ n - 1 = 3, \ n = 4 \)

68. \[2\pi r = 2\lambda \]
\[r = 4 \times a_0 = 4 \times 52.9 \]
\[\lambda = \pi r = 211.6\pi \text{ pm} \]

69. d is comproportionation reaction.

70. PCl₅ molecule is reactive

71. \[\text{Ca(OH)}_2 \rightleftharpoons \text{Ca}^{2+} + 2\text{OH}^- \]
\[\frac{10^{-5}}{2} \times 10^{-5} \]
72.
\[
\begin{align*}
\text{K}_\text{sp} &= [\text{Ca}^{2+}][\text{OH}^-]^2 = 0.5 \times 10^{-15} \\
\ce{CH2=CH2} &\xrightarrow{1) \text{O}_3} \ce{CH=CH2} + \ce{O} \\
&\xrightarrow{2) \text{Zn/H}_2\text{O}} \ce{CH=CH2} + \ce{HCl}
\end{align*}
\]

73. \[\frac{V_{m, \text{real}}}{V_{m, \text{ideal}}} = z < 1, \text{ attractive forces are dominant.} \]

74. Effective no. of A in hcp unit cell = 6
Effective no. of C in hcp unit cell = 0.75 \times 6 = 4.5
\[C_{4.5}A_6 = C_{3}A_{4} \]

75. \[2\text{KMnO}_4 \rightarrow \text{K}_2\text{MnO}_4 + \text{MnO}_2 + \text{O}_2 \]

76. \[4\text{LiNO}_3 \rightarrow 2\text{Li}_2\text{O} + 4\text{NO}_2 + \text{O}_2 \]

77. \[\pi = \text{CRT} = (0.1 + 0.1)(0.082)300 = 4.92 \text{ atm} \]

78. 1st IE (Be > B)

79. Electrical conductivity \(\propto \) acidic strength
\[\text{HCOOH} > \text{Ph–COOH} > \text{CH}_3\text{COOH} \]

80.
\[
\begin{align*}
\text{OH} &\xrightarrow{\text{K}_2\text{CO}_3} \text{O} \\
\text{CH}_3 &\xrightarrow{\text{HC} \equiv \text{C} - \text{CH}_2 - \text{Br}} \text{CH}_3 - \text{C} \equiv \text{CH} \\
\text{K}^\oplus &\xrightarrow{\text{OH, } \Delta} \text{OMDM}
\end{align*}
\]

81. 149°

82. (4)

83.
\[
\begin{align*}
\text{Cl} &\xrightarrow{\text{O}^- \text{K}^\oplus} \text{Ph} \\
&\xrightarrow{\text{OH, } \Delta} \text{OMDM} \\
&\xrightarrow{\text{OH}} \text{Ph}
\end{align*}
\]

84. \[\text{CH}_3 - \text{C} \equiv \text{CH} \xrightarrow{\text{Ag, O}} \text{CH}_3 - \text{C} \equiv \text{C} - \text{Ag(ppt)} \]
85. The O.P. of a colloidal solution is less than that of true solution.

86. Greater the SRP value; greater is the oxidising power.

87. Taking antilog
\[
\frac{d[A]}{dt} = 2 \frac{d[B]}{dt}
\]
From \(xA \to xB \)
\[
\frac{d[A]}{dt} = \frac{x}{y} \frac{d[B]}{dt}
\]
\[
\frac{x}{y} = 2
\]

\[
2C_2H_4 \to C_4H_8
\]

88. \(\Psi^2 \) will be maximum at a & c. (probability density)

89. Thermal stability of (oxosalts) carbonates increases down the group.

90. The energy of \(d_{xy} \) will be maximum, \(d_{xy} \) will have higher energy than \(d_{x} \) (Ligands are present along X & Y axis)

<table>
<thead>
<tr>
<th>91.</th>
<th>(1)</th>
<th>Principles of inheritance & Variations</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.</td>
<td>(4)</td>
<td>Microbes in human welfare</td>
</tr>
<tr>
<td>93.</td>
<td>(3)</td>
<td>Strategies for enhancement in food production</td>
</tr>
<tr>
<td>94.</td>
<td>(3)</td>
<td>Organisms and populations ecosystem</td>
</tr>
<tr>
<td>95.</td>
<td>(3)</td>
<td>Principles of inheritance & Variations</td>
</tr>
<tr>
<td>96.</td>
<td>(2)</td>
<td>Ecosystem</td>
</tr>
<tr>
<td>97.</td>
<td>(3)</td>
<td>Biodiversity and Conservation</td>
</tr>
<tr>
<td>98.</td>
<td>(1)</td>
<td>Environmental Issues</td>
</tr>
<tr>
<td>99.</td>
<td>(3)</td>
<td>Reproduction in organisms</td>
</tr>
<tr>
<td>100.</td>
<td>(3)</td>
<td>Principles of inheritance & Variations</td>
</tr>
<tr>
<td>101.</td>
<td>(2)</td>
<td>Ecosystem</td>
</tr>
<tr>
<td>102.</td>
<td>(1)</td>
<td>Microbes in human welfare</td>
</tr>
<tr>
<td>103.</td>
<td>(1)</td>
<td>Strategies for enhancement in food production</td>
</tr>
<tr>
<td>104.</td>
<td>(2)</td>
<td>Organisms and populations ecosystem</td>
</tr>
<tr>
<td>105.</td>
<td>(1)</td>
<td>Principles of inheritance & Variations</td>
</tr>
<tr>
<td>106.</td>
<td>(2)</td>
<td>Biodiversity and Conservation</td>
</tr>
<tr>
<td>107.</td>
<td>(2)</td>
<td>Environmental Issues</td>
</tr>
<tr>
<td>108.</td>
<td>(3)</td>
<td>Sexual Reproduction in flowering plants</td>
</tr>
<tr>
<td>109.</td>
<td>(1)</td>
<td>Molecular basis of inheritance</td>
</tr>
<tr>
<td>110.</td>
<td>(2)</td>
<td>Principles of inheritance & Variations</td>
</tr>
<tr>
<td>111.</td>
<td>(3)</td>
<td>Ecosystem</td>
</tr>
<tr>
<td>112.</td>
<td>(1)</td>
<td>Microbes in human welfare</td>
</tr>
<tr>
<td>No.</td>
<td>Section</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>(2) Strategies for enhancement in food production</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>(3) Organisms and populations ecosystem</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>(2) Principles of inheritance & Variations</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>(3) Biodiversity and Conservation</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>(1) Environmental Issues</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>(4) Sexual Reproduction in flowering plants</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>(1) Molecular basis of inheritance</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>(2) Biological Classification</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>(1) Ecosystem</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>(2) Microbes in human welfare</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>(2) Strategies for enhancement in food production</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>(3) Organisms and populations ecosystem</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>(1) Cell : The Unit of Life</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>(4) Biodiversity and Conservation</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>(3) Environmental Issues</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>(2) Ecosystem</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>(3) Biodiversity and Conservation</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>(1) Principles of inheritance & Variations</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>(2) Morphology of flowering plants</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>(1) Microbes in human welfare</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>(3) Strategies for enhancement in food production</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>(3) Organisms and populations ecosystem</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>(1) Photosynthesis in higher plants</td>
<td></td>
</tr>
</tbody>
</table>